Difference between revisions of "Aufgaben:Exercise 4.4: Pointer Diagram for DSB-AM"
m (Oezdemir moved page Aufgabe 4.4: Zeigerdiagramm bei ZSB-AM to Exercise 4.4: Vector Diagram for DSB-AM) |
|||
Line 5: | Line 5: | ||
[[File:P_ID718__Sig_A_4_4.png|250px|right|frame|Spektrum des analytischen Signals]] | [[File:P_ID718__Sig_A_4_4.png|250px|right|frame|Spektrum des analytischen Signals]] | ||
− | + | We assume a cosine-shaped source signal q(t) with | |
− | * | + | *the amplitude AN=0.8 V and |
− | * | + | *the frequency fN=10 kHz. |
− | + | The frequency conversion is done by means of [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#ZSB-Amplitudenmodulation_mit_Tr.C3.A4ger|Zweiseitenband–Amplitudenmodulation mit Träger]]. | |
− | + | The modulated signal s(t) is with the (normalised) carrier z(t)=cos(ωT⋅t) and the DC component q0=1 V: | |
:$$\begin{align*} s(t) & = \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm} | :$$\begin{align*} s(t) & = \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm} | ||
Line 20: | Line 20: | ||
+ {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$ | + {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$ | ||
− | + | The first term describes the carrier, the second term the so-called upper sideband (USB) and the last term the lower sideband (LSB). | |
− | + | The sketch shows the spectrum S+(f) of the corresponding analytical signal for fT=50 kHz. You can see | |
− | * | + | *the carrier (red), |
− | * | + | *the upper sideband (blue) and |
− | * | + | *the lower sideband (grün). |
− | In | + | In subtask '''(5)''' the magnitude of s+(t) is asked for. This is the length of the resulting pointer. |
Line 36: | Line 36: | ||
− | '' | + | |
− | * | + | ''Hints:'' |
+ | *This task belongs to the chapter [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and Its Spectral Function]]. | ||
− | * | + | *You can check your solution with the interaction module [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal]] . |
− | |||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the analytical signal s+(t). What is its magnitude at time t=0? |
|type="{}"} | |type="{}"} | ||
Re[s+(t=0)] = { 1.8 3% } V | Re[s+(t=0)] = { 1.8 3% } V | ||
Im[s+(t=0)] = { 0. } V | Im[s+(t=0)] = { 0. } V | ||
− | { | + | {Which of the following statements is true? |
|type="[]"} | |type="[]"} | ||
− | + s+(t) | + | + s+(t) results from s(t), if cos(...) is replaced ej(...) . |
− | - | + | - If s(t) is an even time function, s+(t) is purely real. |
− | - | + | - At no time does the imaginary part of s+(t) disappear. |
− | { | + | {What is the value of the analytical signal at time t = 5 \ {\rm µ}\text{s}? |
|type="{}"} | |type="{}"} | ||
\text{Re}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ { 0. } V | \text{Re}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ { 0. } V | ||
\text{Im}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ { 1.761 3% } V | \text{Im}[s_+(t=5 \ {\rm µ} \text{s})]\ = \ { 1.761 3% } V | ||
− | { | + | {What is the value of s+(t) at time t = 20 \ {\rm µ}\text{s}? |
|type="{}"} | |type="{}"} | ||
\text{Re}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ { 1.236 3% } V | \text{Re}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ { 1.236 3% } V | ||
\text{Im}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ { 0. } V | \text{Im}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ { 0. } V | ||
− | { | + | {What is the smallest possible pointer length? At what time tmin does this value occur for the first time? |
|type="{}"} | |type="{}"} | ||
|s+(t)|min = { 0.2 3% } V | |s+(t)|min = { 0.2 3% } V | ||
Line 77: | Line 77: | ||
− | === | + | ===Solutions=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' By inverse Fourier transformation of S+(f) considering the [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]] holds: |
:$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm | :$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm | ||
Line 88: | Line 88: | ||
40}\hspace{0.05cm} t }.$$ | 40}\hspace{0.05cm} t }.$$ | ||
− | + | The expression describes the sum of three pointers rotating at different angular velocities. | |
− | *In | + | *In the above equation, for example, ω60=2π(fT+fN)=2π⋅60 kHz. |
− | * | + | *At time t=0 all three pointers point in the direction of the real axis (see left graph). |
− | + | One obtains the <u>purely real</u> value s+(t=0)=1.8 V_. | |
[[File:EN_Sig_A_4_4_ML.png|left|frame|Drei verschiedene analytische Signale]] | [[File:EN_Sig_A_4_4_ML.png|left|frame|Drei verschiedene analytische Signale]] | ||
<br clear=all> | <br clear=all> | ||
− | '''(2)''' | + | '''(2)''' The <u>first statement</u> is correct and results from the [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function#Representation_with_Hilbert_Transform|Hilbert transform]]. On the other hand, the next two statements are not correct: |
− | *s+(t) | + | *s+(t) is always a complex time function with the exception of the limiting case s(t)=0. |
− | * | + | *However, every complex function also has purely real values at some points in time. |
− | * | + | *The pointer composite always rotates in a mathematically positive direction. |
− | * | + | *If the sum vector crosses the real axis, the imaginary part disappears at this point and s+(t) is purely real. |
− | '''(3)''' | + | '''(3)''' The period of the carrier signal is T_0 = 1/f_T = 20 \ {\rm µ} \text{s}. |
− | * | + | *After t = 5 \ {\rm µ} \text{s} (see middle graph) the carrier has thus rotated by 90∘ gedreht. |
− | * | + | *The blue pointer (USB) rotates 20% faster, the green one (LSB) 20% slower than the red rotary pointer (carrier signal): |
:$$s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 | :$$s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 | ||
Line 121: | Line 121: | ||
{\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.$$ | {\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.$$ | ||
− | * | + | *Thus, the angles travelled in 5 \ {\rm µ} \text{s} by USB and LSB are 108∘ and 72∘ respectively. |
− | * | + | *Since at this time the real parts of USB and LSB compensate, s_+(t=5 \ {\rm µ} \text{s}) is <u>purely imaginary</u> and we obtain: |
:$${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = | :$${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = | ||
Line 130: | Line 130: | ||
− | '''(4)''' | + | '''(4)''' After one revolution of the red carrier, i.e. at time t = T_0 = 20 \ {\rm µ} \text{s}, the blue pointer has already covered 72∘ more and the green pointer correspondingly 72∘ less. The sum of the three pointers is again <u>purely real</u> and results in accordance with the graph on the right: |
:$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = | :$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = | ||
Line 137: | Line 137: | ||
− | '''(5)''' | + | '''(5)''' The magnitude is minimum when the pointers of the two sidebands are offset from the carrier by 180∘ . It follows: |
:$$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm | :$$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm | ||
0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$ | 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$ | ||
− | + | Within one period T0 of the carrier, a phase offset of ±72∘ occurs with respect to the pointers of the two sidebands. From this follows: | |
:t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}. | :t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 22:55, 5 February 2021
We assume a cosine-shaped source signal q(t) with
- the amplitude AN=0.8 V and
- the frequency fN=10 kHz.
The frequency conversion is done by means of Zweiseitenband–Amplitudenmodulation mit Träger.
The modulated signal s(t) is with the (normalised) carrier z(t)=cos(ωT⋅t) and the DC component q0=1 V:
- s(t)=(q0+q(t))⋅z(t)=(1V+0.8V⋅cos(ωN⋅t))⋅cos(ωT⋅t)==q0⋅cos(ωT⋅t)+AN/2⋅cos((ωT+ωN)⋅t)+AN/2⋅cos((ωT−ωN)⋅t).
The first term describes the carrier, the second term the so-called upper sideband (USB) and the last term the lower sideband (LSB).
The sketch shows the spectrum S+(f) of the corresponding analytical signal for fT=50 kHz. You can see
- the carrier (red),
- the upper sideband (blue) and
- the lower sideband (grün).
In subtask (5) the magnitude of s+(t) is asked for. This is the length of the resulting pointer.
Hints:
- This task belongs to the chapter Analytical Signal and Its Spectral Function.
- You can check your solution with the interaction module Physikalisches Signal & Analytisches Signal .
Questions
Solutions
- s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 40}\hspace{0.05cm} t }.
The expression describes the sum of three pointers rotating at different angular velocities.
- In the above equation, for example, \omega_{60} = 2\pi (f_{\rm T} + f_{\rm N}) = 2\pi \cdot 60 \ \text{kHz}.
- At time t = 0 all three pointers point in the direction of the real axis (see left graph).
One obtains the purely real value s_+(t = 0) \;\underline{= 1.8 \ \text{V}}.
(2) The first statement is correct and results from the Hilbert transform. On the other hand, the next two statements are not correct:
- s_+(t) is always a complex time function with the exception of the limiting case s(t) = 0.
- However, every complex function also has purely real values at some points in time.
- The pointer composite always rotates in a mathematically positive direction.
- If the sum vector crosses the real axis, the imaginary part disappears at this point and s_+(t) is purely real.
(3) The period of the carrier signal is T_0 = 1/f_T = 20 \ {\rm µ} \text{s}.
- After t = 5 \ {\rm µ} \text{s} (see middle graph) the carrier has thus rotated by 90^{\circ} gedreht.
- The blue pointer (USB) rotates 20\% faster, the green one (LSB) 20\% slower than the red rotary pointer (carrier signal):
- s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}50 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}60 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}40 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 90^\circ }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 108^\circ }+{\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.
- Thus, the angles travelled in 5 \ {\rm µ} \text{s} by USB and LSB are 108^{\circ} and 72^{\circ} respectively.
- Since at this time the real parts of USB and LSB compensate, s_+(t=5 \ {\rm µ} \text{s}) is purely imaginary and we obtain:
- {\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (18^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.761 \hspace{0.05cm} V}}.
(4) After one revolution of the red carrier, i.e. at time t = T_0 = 20 \ {\rm µ} \text{s}, the blue pointer has already covered 72^{\circ} more and the green pointer correspondingly 72^{\circ} less. The sum of the three pointers is again purely real and results in accordance with the graph on the right:
- {\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (72^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.236 \hspace{0.05cm} V}}.
(5) The magnitude is minimum when the pointers of the two sidebands are offset from the carrier by 180^{\circ} . It follows:
- |s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.
Within one period T_0 of the carrier, a phase offset of \pm72^{\circ} occurs with respect to the pointers of the two sidebands. From this follows:
- t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}.