Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.4: Pointer Diagram for DSB-AM"

From LNTwww
Line 5: Line 5:
 
[[File:P_ID718__Sig_A_4_4.png|250px|right|frame|Spektrum des analytischen Signals]]
 
[[File:P_ID718__Sig_A_4_4.png|250px|right|frame|Spektrum des analytischen Signals]]
  
Wir gehen aus von einem cosinusförmigen Quellensignal  q(t)  mit
+
We assume a cosine-shaped source signal  q(t)  with
*der Amplitude  AN=0.8 V   und
+
*the amplitude  AN=0.8 V   and
*der Frequenz  fN=10 kHz.  
+
*the frequency  fN=10 kHz.  
  
  
Die Frequenzumsetzung erfolgt mittels  [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#ZSB-Amplitudenmodulation_mit_Tr.C3.A4ger|Zweiseitenband–Amplitudenmodulation mit Träger]], abgekürzt ZSB–AM.
+
The frequency conversion is done by means of  [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#ZSB-Amplitudenmodulation_mit_Tr.C3.A4ger|Zweiseitenband–Amplitudenmodulation mit Träger]].
  
Das modulierte Signal  s(t)  lautet mit dem (normierten) Träger  z(t)=cos(ωTt)  und dem Gleichanteil  q0=1 V:
+
The modulated signal  s(t)  is with the (normalised) carrier  z(t)=cos(ωTt)  and the DC component  q0=1 V:
 
   
 
   
 
:$$\begin{align*} s(t) & =  \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm}
 
:$$\begin{align*} s(t) & =  \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm}
Line 20: Line 20:
 
  +  {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$
 
  +  {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$
  
Der erste Term beschreibt den Träger, der zweite Term das sogenannte obere Seitenband (OSB) und der letzte Term das untere Seitenband (USB).
+
The first term describes the carrier, the second term the so-called upper sideband (USB) and the last term the lower sideband (LSB).
  
Die Skizze zeigt das Spektrum  S+(f)  des dazugehörigen analytischen Signals für  fT=50 kHz. Man erkennt
+
The sketch shows the spectrum  S+(f)  of the corresponding analytical signal for  fT=50 kHz. You can see
*den Träger (rot),  
+
*the carrier (red),  
*das obere Seitenband (blau) und
+
*the upper sideband (blue) and
*das untere Seitenband (grün).
+
*the lower sideband (grün).
  
  
In der Teilaufgabe  '''(5)'''  ist nach dem Betrag von  s+(t)  gefragt. Hierunter versteht man die Länge des resultierenden Zeigers.
+
In subtask  '''(5)'''  the magnitude of  s+(t)  is asked for. This is the length of the resulting pointer.
  
  
Line 36: Line 36:
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytisches Signal und zugehörige Spektralfunktion]].
+
''Hints:''  
 +
*This task belongs to the chapter  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and Its Spectral Function]].
 
   
 
   
*Sie können Ihre Lösung mit dem Interaktionsmodul  [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal]]  überprüfen.
+
*You can check your solution with the interaction module  [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal]] .
 
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet das analytische Signal&nbsp; s+(t). Wie groß ist dieses zur Zeit&nbsp; t=0?
+
{What is the analytical signal&nbsp; s+(t). What is its magnitude at time&nbsp; t=0?
 
|type="{}"}
 
|type="{}"}
 
Re[s+(t=0)] =   { 1.8 3% } &nbsp;V
 
Re[s+(t=0)] =   { 1.8 3% } &nbsp;V
 
Im[s+(t=0)] =  { 0. } &nbsp;V
 
Im[s+(t=0)] =  { 0. } &nbsp;V
  
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements is true?
 
|type="[]"}
 
|type="[]"}
+ s+(t)&nbsp; ergibt sich aus&nbsp; s(t), wenn man&nbsp; cos(...)&nbsp; durch&nbsp; ej(...)&nbsp; ersetzt.
+
+ s+(t)&nbsp; results from&nbsp; s(t), if&nbsp; cos(...)&nbsp; is replaced&nbsp; ej(...)&nbsp;.
- Ist&nbsp; s(t)&nbsp; eine gerade Zeitfunktion, so ist&nbsp; s+(t)&nbsp; rein reell.
+
- If&nbsp; s(t)&nbsp; is an even time function,&nbsp; s+(t)&nbsp; is purely real.
- Zu keinem Zeitpunkt verschwindet der Imaginärteil von&nbsp; s+(t).
+
- At no time does the imaginary part of&nbsp; s+(t) disappear.
  
  
{Welchen Wert besitzt das analytische Signal zur Zeit&nbsp; t = 5 \ {\rm &micro;}\text{s}?
+
{What is the value of the analytical signal at time&nbsp; t = 5 \ {\rm &micro;}\text{s}?
 
|type="{}"}
 
|type="{}"}
 
\text{Re}[s_+(t=5  \ {\rm &micro;} \text{s})]\ = \ { 0. } &nbsp;V
 
\text{Re}[s_+(t=5  \ {\rm &micro;} \text{s})]\ = \ { 0. } &nbsp;V
 
\text{Im}[s_+(t=5 \ {\rm &micro;} \text{s})]\ = \ { 1.761 3% } &nbsp;V
 
\text{Im}[s_+(t=5 \ {\rm &micro;} \text{s})]\ = \ { 1.761 3% } &nbsp;V
  
{Welchen Wert besitzt&nbsp; s+(t)&nbsp; zum Zeitpunkt&nbsp; t = 20 \ {\rm &micro;}\text{s}?
+
{What is the value of&nbsp; s+(t)&nbsp; at time&nbsp; t = 20 \ {\rm &micro;}\text{s}?
 
|type="{}"}
 
|type="{}"}
 
\text{Re}[s_+(t=20 \ {\rm &micro;} \text{s})]\ = \ { 1.236 3% } &nbsp;V
 
\text{Re}[s_+(t=20 \ {\rm &micro;} \text{s})]\ = \ { 1.236 3% } &nbsp;V
 
\text{Im}[s_+(t=20 \ {\rm &micro;} \text{s})]\ = \ { 0. } &nbsp;V
 
\text{Im}[s_+(t=20 \ {\rm &micro;} \text{s})]\ = \ { 0. } &nbsp;V
  
{Wie groß ist die kleinstmögliche Zeigerlänge? Zu welchem Zeitpunkt&nbsp; tmin&nbsp; tritt dieser Wert zum ersten Mal auf?
+
{What is the smallest possible pointer length? At what time &nbsp; tmin&nbsp; does this value occur for the first time?
 
|type="{}"}
 
|type="{}"}
 
|s+(t)|min =  { 0.2 3% } &nbsp;V
 
|s+(t)|min =  { 0.2 3% } &nbsp;V
Line 77: Line 77:
  
  
===Musterlösung===
+
===Solutions===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Durch Fourierrücktransformation von&nbsp; S+(f)&nbsp; unter Berücksichtigung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]&nbsp; gilt:
+
'''(1)'''&nbsp;  By inverse Fourier transformation of&nbsp; S+(f)&nbsp; considering the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]&nbsp; holds:
 
   
 
   
 
:$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm
 
:$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm
Line 88: Line 88:
 
40}\hspace{0.05cm} t }.$$
 
40}\hspace{0.05cm} t }.$$
  
Der Ausdruck beschreibt die Summe dreier Zeiger, die mit unterschiedlichen Winkelgeschwindigkeiten drehen.  
+
The expression describes the sum of three pointers rotating at different angular velocities.
*In obiger Gleichung bedeutet beispielsweise&nbsp;  ω60=2π(fT+fN)=2π60 kHz.  
+
*In the above equation, for example,&nbsp;  ω60=2π(fT+fN)=2π60 kHz.  
*Zum Zeitpunkt&nbsp; t=0&nbsp; zeigen alle drei Zeiger in Richtung der reellen Achse (siehe linke Grafik).
+
*At time&nbsp; t=0&nbsp; all three pointers point in the direction of the real axis (see left graph).
*Man erhält den <u>rein reellen</u> Wert&nbsp; s+(t=0)=1.8 V_.
+
One obtains the <u>purely real</u> value&nbsp; s+(t=0)=1.8 V_.
  
 
[[File:EN_Sig_A_4_4_ML.png|left|frame|Drei verschiedene analytische Signale]]
 
[[File:EN_Sig_A_4_4_ML.png|left|frame|Drei verschiedene analytische Signale]]
 
<br clear=all>
 
<br clear=all>
'''(2)'''&nbsp;  Die <u>erste Aussage</u> ist richtig und ergibt sich aus der [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function#Darstellung_mit_der_Hilberttransformation|Hilbert-Transformation]]. Dagegen stimmen die nächsten beiden Aussagen nicht:  
+
'''(2)'''&nbsp;  The <u>first statement</u> is correct and results from the [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function#Representation_with_Hilbert_Transform|Hilbert transform]]. On the other hand, the next two statements are not correct:
*s+(t)&nbsp; ist stets eine komplexe Zeitfunktion mit Ausnahme des Grenzfalls&nbsp; s(t)=0.  
+
*s+(t)&nbsp; is always a complex time function with the exception of the limiting case&nbsp; s(t)=0.  
*Jede komplexe Funktion hat jedoch zu einigen Zeitpunkten auch rein reelle Werte.
+
*However, every complex function also has purely real values at some points in time.
*Der Zeigerverbund dreht immer in mathematisch positiver Richtung.  
+
*The pointer composite always rotates in a mathematically positive direction.  
*Überschreitet der Summenvektor die reelle Achse, so verschwindet zu diesem Zeitpunkt der Imaginärteil und&nbsp; s+(t)&nbsp; ist rein reell.
+
*If the sum vector crosses the real axis, the imaginary part disappears at this point and&nbsp; s+(t)&nbsp; is purely real.
  
  
  
'''(3)'''&nbsp;  Die Periodendauer des Trägersignals beträgt&nbsp; T_0 = 1/f_T = 20 \ {\rm &micro;} \text{s}.  
+
'''(3)'''&nbsp;  The period of the carrier signal is&nbsp; T_0 = 1/f_T = 20 \ {\rm &micro;} \text{s}.  
*Nach&nbsp; t = 5 \ {\rm &micro;} \text{s}&nbsp;  (siehe mittlere Grafik) hat sich der Träger somit um&nbsp; 90&nbsp; gedreht.  
+
*After&nbsp; t = 5 \ {\rm &micro;} \text{s}&nbsp;  (see middle graph) the carrier has thus rotated by&nbsp; 90&nbsp; gedreht.  
*Der blaue Zeiger (OSB) dreht um&nbsp; 20%&nbsp; schneller, der grüne (USB) um&nbsp; 20%&nbsp; langsamer als der rote Drehzeiger (Trägersignal):
+
*The blue pointer (USB) rotates&nbsp; 20%&nbsp; faster, the green one (LSB)&nbsp; 20%&nbsp; slower than the red rotary pointer (carrier signal):
 
   
 
   
 
:$$s_{+}({\rm 5 \hspace{0.05cm} {\rm &micro;}  s})  =  {\rm 1
 
:$$s_{+}({\rm 5 \hspace{0.05cm} {\rm &micro;}  s})  =  {\rm 1
Line 121: Line 121:
 
{\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.$$
 
{\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.$$
  
*Somit sind die in&nbsp; 5 \ {\rm &micro;} \text{s}&nbsp; zurückgelegten Winkel von OSB und USB&nbsp; 108&nbsp; bzw.&nbsp; 72.  
+
*Thus, the angles travelled in&nbsp; 5 \ {\rm &micro;} \text{s}&nbsp; by USB and LSB are&nbsp; 108&nbsp; and&nbsp; 72 respectively.  
*Da sich zu diesem Zeitpunkt die Realteile von OSB und USB kompensieren, ist&nbsp; s_+(t=5  \ {\rm &micro;}  \text{s})&nbsp; <u>rein imaginär</u> und man erhält:
+
*Since at this time the real parts of USB and LSB compensate,&nbsp; s_+(t=5  \ {\rm &micro;}  \text{s})&nbsp; is <u>purely imaginary</u> and we obtain:
 
   
 
   
 
:$${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm &micro;}  s})\right] =
 
:$${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm &micro;}  s})\right] =
Line 130: Line 130:
  
  
'''(4)'''&nbsp;  Nach einer Umdrehung des roten Trägers, also zum Zeitpunkt t = T_0 = 20 \ {\rm &micro;} \text{s} hat der blaue Zeiger bereits 72 mehr zurückgelegt und der grüne Zeiger dementsprechend 72 weniger. Die Summe der drei Zeiger ist wieder <u>rein reell</u> und ergibt entsprechend der  rechten Grafik:
+
'''(4)'''&nbsp;  After one revolution of the red carrier, i.e. at time t = T_0 = 20 \ {\rm &micro;} \text{s}, the blue pointer has already covered 72 more and the green pointer correspondingly 72 less. The sum of the three pointers is again <u>purely real</u> and results in accordance with the graph on the right:
 
   
 
   
 
:$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm &micro;}  s})\right] =
 
:$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm &micro;}  s})\right] =
Line 137: Line 137:
  
  
'''(5)'''&nbsp; Der Betrag ist minimal, wenn die Zeiger der beiden Seitenbänder gegenüber dem Träger um&nbsp; 180&nbsp; versetzt sind. Daraus folgt:
+
'''(5)'''&nbsp; The magnitude is minimum when the pointers of the two sidebands are offset from the carrier by&nbsp; 180&nbsp;. It follows:
 
   
 
   
 
:$$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm
 
:$$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm
 
0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$
 
0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$
  
Innerhalb einer Periode&nbsp; T0&nbsp; des Trägers tritt gegenüber den Zeigern der beiden Seitenbändern ein Phasenversatz von&nbsp; ±72&nbsp; auf. Daraus folgt:  
+
Within one period&nbsp; T0&nbsp; of the carrier, a phase offset of&nbsp; ±72&nbsp; occurs with respect to the pointers of the two sidebands. From this follows:
 
:t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0  \;\underline{= 50 \ {\rm &micro;} \text{s}}.
 
:t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0  \;\underline{= 50 \ {\rm &micro;} \text{s}}.
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 22:55, 5 February 2021

Spektrum des analytischen Signals

We assume a cosine-shaped source signal  q(t)  with

  • the amplitude  AN=0.8 V  and
  • the frequency  fN=10 kHz.


The frequency conversion is done by means of  Zweiseitenband–Amplitudenmodulation mit Träger.

The modulated signal  s(t)  is with the (normalised) carrier  z(t)=cos(ωTt)  and the DC component  q0=1 V:

s(t)=(q0+q(t))z(t)=(1V+0.8Vcos(ωNt))cos(ωTt)==q0cos(ωTt)+AN/2cos((ωT+ωN)t)+AN/2cos((ωTωN)t).

The first term describes the carrier, the second term the so-called upper sideband (USB) and the last term the lower sideband (LSB).

The sketch shows the spectrum  S+(f)  of the corresponding analytical signal for  fT=50 kHz. You can see

  • the carrier (red),
  • the upper sideband (blue) and
  • the lower sideband (grün).


In subtask  (5)  the magnitude of  s+(t)  is asked for. This is the length of the resulting pointer.





Hints:


Questions

1

What is the analytical signal  s+(t). What is its magnitude at time  t=0?

Re[s+(t=0)] = 

 V
Im[s+(t=0)] = 

 V

2

Which of the following statements is true?

s+(t)  results from  s(t), if  cos(...)  is replaced  ej(...) .
If  s(t)  is an even time function,  s+(t)  is purely real.
At no time does the imaginary part of  s+(t) disappear.

3

What is the value of the analytical signal at time  t = 5 \ {\rm µ}\text{s}?

\text{Re}[s_+(t=5 \ {\rm µ} \text{s})]\ = \

 \text{V}
\text{Im}[s_+(t=5 \ {\rm µ} \text{s})]\ = \

 \text{V}

4

What is the value of  s_+(t)  at time  t = 20 \ {\rm µ}\text{s}?

\text{Re}[s_+(t=20 \ {\rm µ} \text{s})]\ = \

 \text{V}
\text{Im}[s_+(t=20 \ {\rm µ} \text{s})]\ = \

 \text{V}

5

What is the smallest possible pointer length? At what time   t_{\text{min}}  does this value occur for the first time?

|s_+(t)|_{\text{min}}\ = \

 \text{V}
t_{\text{min}}\ = \

 {\rm µ} \text{s}


Solutions

(1)  By inverse Fourier transformation of  S_+(f)  considering the  Verschiebungssatzes  holds:

s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 40}\hspace{0.05cm} t }.

The expression describes the sum of three pointers rotating at different angular velocities.

  • In the above equation, for example,  \omega_{60} = 2\pi (f_{\rm T} + f_{\rm N}) = 2\pi \cdot 60 \ \text{kHz}.
  • At time  t = 0  all three pointers point in the direction of the real axis (see left graph).

One obtains the purely real value  s_+(t = 0) \;\underline{= 1.8 \ \text{V}}.

Drei verschiedene analytische Signale


(2)  The first statement is correct and results from the Hilbert transform. On the other hand, the next two statements are not correct:

  • s_+(t)  is always a complex time function with the exception of the limiting case  s(t) = 0.
  • However, every complex function also has purely real values at some points in time.
  • The pointer composite always rotates in a mathematically positive direction.
  • If the sum vector crosses the real axis, the imaginary part disappears at this point and  s_+(t)  is purely real.


(3)  The period of the carrier signal is  T_0 = 1/f_T = 20 \ {\rm µ} \text{s}.

  • After  t = 5 \ {\rm µ} \text{s}  (see middle graph) the carrier has thus rotated by  90^{\circ}  gedreht.
  • The blue pointer (USB) rotates  20\%  faster, the green one (LSB)  20\%  slower than the red rotary pointer (carrier signal):
s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}50 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}60 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}40 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 90^\circ }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 108^\circ }+{\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.
  • Thus, the angles travelled in  5 \ {\rm µ} \text{s}  by USB and LSB are  108^{\circ}  and  72^{\circ} respectively.
  • Since at this time the real parts of USB and LSB compensate,  s_+(t=5 \ {\rm µ} \text{s})  is purely imaginary and we obtain:
{\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (18^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.761 \hspace{0.05cm} V}}.


(4)  After one revolution of the red carrier, i.e. at time t = T_0 = 20 \ {\rm µ} \text{s}, the blue pointer has already covered 72^{\circ} more and the green pointer correspondingly 72^{\circ} less. The sum of the three pointers is again purely real and results in accordance with the graph on the right:

{\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (72^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.236 \hspace{0.05cm} V}}.


(5)  The magnitude is minimum when the pointers of the two sidebands are offset from the carrier by  180^{\circ} . It follows:

|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.

Within one period  T_0  of the carrier, a phase offset of  \pm72^{\circ}  occurs with respect to the pointers of the two sidebands. From this follows:

t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}.