Difference between revisions of "Applets:Two-dimensional Gaussian Random Variables"

From LNTwww
Line 168: Line 168:
 
*Für die eindimensionale Wahrscheinlichkeitsdichtefunktion  $\text{(1D–WDF)}$  gilt:   $f_{X}(x) = \sqrt{1/(2\pi \cdot \sigma_X^2)} \cdot {\rm e}^{-x^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm} \sigma_X^2)}$.  
 
*Für die eindimensionale Wahrscheinlichkeitsdichtefunktion  $\text{(1D–WDF)}$  gilt:   $f_{X}(x) = \sqrt{1/(2\pi \cdot \sigma_X^2)} \cdot {\rm e}^{-x^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm} \sigma_X^2)}$.  
  
 +
 +
{{BlueBox|TEXT=
 +
'''(1)'''  Get familiar with the program using the default  $(\sigma_X=1, \ \sigma_Y=0.5, \ \rho = 0.7)$.  Interpret the graphs for  $\rm PDF$  and  $\rm CDF$.}}
 +
 +
* $\rm PDF$  is a "ridge" with the maximum at  $x = 0, \ y = 0$.  The ridge is slightly twisted with respect to the  $x$–axis.
 +
* $\rm CDF$  is obtained from  $\rm PDF$  by continuous integration in both directions.  The maximum $($near  $1)$  occurs at  $x=3, \ y=3$ .
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
'''(1)'''  Machen Sie sich anhand der Voreinstellung  $(\sigma_X=1, \ \sigma_Y=0.5, \ \rho = 0.7)$  mit dem Programm vertraut. Interpretieren Sie die Grafiken für  $\rm WDF$  und  $\rm VTF$.}}
 
'''(1)'''  Machen Sie sich anhand der Voreinstellung  $(\sigma_X=1, \ \sigma_Y=0.5, \ \rho = 0.7)$  mit dem Programm vertraut. Interpretieren Sie die Grafiken für  $\rm WDF$  und  $\rm VTF$.}}
  
::* $\rm WDF$  ist ein Bergrücken mit dem Maximum bei  $x = 0, \ y = 0$. Der Bergkamm ist leicht verdreht gegenüber der  $x$–Achse.
+
* $\rm WDF$  ist ein Bergrücken mit dem Maximum bei  $x = 0, \ y = 0$. Der Bergkamm ist leicht verdreht gegenüber der  $x$–Achse.
::* $\rm VTF$  ergibt sich aus  $\rm WDF$  durch fortlaufende Integration in beide Richtungen. Das Maximum $($nahezu  $1)$  tritt bei  $x=3, \ y=3$  auf.   
+
* $\rm VTF$  ergibt sich aus  $\rm WDF$  durch fortlaufende Integration in beide Richtungen. Das Maximum $($nahezu  $1)$  tritt bei  $x=3, \ y=3$  auf.   
 +
 
 +
 
 +
{{BlueBox|TEXT=
 +
'''(2)'''  Now the setting is   $\sigma_X= \sigma_Y=1, \ \rho = 0$.  What are the values for  $f_{XY}(0,\ 0)$  and  $F_{XY}(0,\ 0)$?  Interpret the results.}}
 +
 
 +
* The PDF maximum is  $f_{XY}(0,\ 0) = 1/(2\pi)= 0.1592$, because of  $\sigma_X= \sigma_Y = 1, \ \rho = 0$. The contour lines are circles.
 +
* For the VTF value holds:  $F_{XY}(0,\ 0) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 0)] = 0.25$. Slight deviation due to numerical integration.
 +
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
'''(2)'''  Nun lautet die Einstellung  $\sigma_X= \sigma_Y=1, \ \rho = 0$. Welche Werte ergeben sich für  $f_{XY}(0,\ 0)$  und  $F_{XY}(0,\ 0)$? Interpretieren Sie die Ergebnisse.}}
 
'''(2)'''  Nun lautet die Einstellung  $\sigma_X= \sigma_Y=1, \ \rho = 0$. Welche Werte ergeben sich für  $f_{XY}(0,\ 0)$  und  $F_{XY}(0,\ 0)$? Interpretieren Sie die Ergebnisse.}}
  
::* Das WDF–Maximum ist   $f_{XY}(0,\ 0) = 1/(2\pi)= 0.1592$, wegen  $\sigma_X= \sigma_Y = 1, \ \rho = 0$. Die Höhenlinien sind Kreise.
+
* Das WDF–Maximum ist   $f_{XY}(0,\ 0) = 1/(2\pi)= 0.1592$, wegen  $\sigma_X= \sigma_Y = 1, \ \rho = 0$. Die Höhenlinien sind Kreise.
::* Für den VTF-Wert gilt:  $F_{XY}(0,\ 0) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 0)] = 0.25$. Geringfügige Abweichung wegen numerischer Integration.
+
* Für den VTF-Wert gilt:  $F_{XY}(0,\ 0) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 0)] = 0.25$. Geringfügige Abweichung wegen numerischer Integration.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Line 264: Line 278:
  
 
==About the Authors==
 
==About the Authors==
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 
*Die erste Version wurde 2003 von [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
* 2019 wurde das Programm  von [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]  im Rahmen einer Werkstudententätigkeit auf  „HTML5” umgesetzt und neu gestaltet (Betreuer: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
 
  
 +
This interactive calculation tool was designed and implemented at the  [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]  at the  [https://www.tum.de/en Technical University of Munich].
 +
*The first version was created in 2003 by  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]]  as part of her bachelor thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 +
 +
*In 2019 the program was redesigned by  [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]  in the context of a working student activity.  Translation using DEEPL.com.
 +
 +
 +
The conversion of this applet to HTML 5 was financially supported by  [https://www.ei.tum.de/studium/studienzuschuesse/ "Studienzuschüsse"]  (Faculty EI of the TU Munich).  We thank.
  
Die Umsetzung dieses Applets auf HTML 5 wurde durch  [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]  der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.
 
  
  

Revision as of 12:57, 4 March 2021

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


Das Applet verdeutlicht die Eigenschaften zweidimensionaler Gaußscher Zufallsgrößen  $XY\hspace{-0.1cm}$, gekennzeichnet durch die Standardabweichungen (Streuungen)  $\sigma_X$  und  $\sigma_Y$  ihrer beiden Komponenten sowie den Korrelationskoeffizienten  $\rho_{XY}$ zwischen diesen. Die Komponenten werden als mittelwertfrei vorausgesetzt:  $m_X = m_Y = 0$.

Das Applet zeigt

  • die zweidimensionale Wahrscheinlichkeitsdichtefunktion   ⇒   $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  $f_{XY}(x, \hspace{0.1cm}y)$  in dreidimensionaler Darstellung sowie in Form von Höhenlinien,
  • die zugehörige Randwahrscheinlichkeitsdichtefunktion  ⇒   $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  $f_{X}(x)$  der Zufallsgröße  $X$  als blaue Kurve; ebenso  $f_{Y}(y)$  für die zweite Zufallsgröße,
  • die zweidimensionale Verteilungsfunktion   ⇒   $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$  $F_{XY}(x, \hspace{0.1cm}y)$  als 3D-Plot,
  • die Verteilungsfunktion  ⇒   $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$  $F_{X}(x)$  der Zufallsgröße  $X$; ebenso  $F_{Y}(y)$  als rote Kurve.


Das Applet verwendet das Framework  Plot.ly

Theoretical Background


Verbundwahrscheinlichkeitsdichtefunktion   ⇒   2D–WDF

Wir betrachten zwei wertkontinuierliche Zufallsgrößen  $X$  und  $Y\hspace{-0.1cm}$, zwischen denen statistische Abhängigkeiten bestehen können. Zur Beschreibung der Wechselbeziehungen zwischen diesen Größen ist es zweckmäßig, die beiden Komponenten zu einer  zweidimensionalen Zufallsgröße  $XY =(X, Y)$  zusammenzufassen. Dann gilt:

$\text{Definition:}$  Die  Verbundwahrscheinlichkeitsdichtefunktion  ist die Wahrscheinlichkeitsdichtefunktion (WDF,  englisch:  Probability Density Function, kurz: PDF) der zweidimensionalen Zufallsgröße  $XY$  an der Stelle  $(x, y)$:

$$f_{XY}(x, \hspace{0.1cm}y) = \lim_{\left.{\Delta x\rightarrow 0 \atop {\Delta y\rightarrow 0} }\right.}\frac{ {\rm Pr}\big [ (x - {\rm \Delta} x/{\rm 2} \le X \le x + {\rm \Delta} x/{\rm 2}) \cap (y - {\rm \Delta} y/{\rm 2} \le Y \le y +{\rm \Delta}y/{\rm 2}) \big] }{ {\rm \Delta} \ x\cdot{\rm \Delta} y}.$$
  • Die Verbundwahrscheinlichkeitsdichtefunktion oder kurz  $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  ist eine Erweiterung der eindimensionalen WDF.
  • $∩$  kennzeichnet die logische UND-Verknüpfung.
  • $X$  und  $Y$ bezeichnen die beiden Zufallsgrößen, und  $x \in X$  sowie   $y \in Y$ geben Realisierungen hiervon an.
  • Die für dieses Applet verwendete Nomenklatur unterscheidet sich also geringfügig gegenüber der Beschreibung im Theorieteil.


Anhand dieser 2D–WDF  $f_{XY}(x, y)$  werden auch statistische Abhängigkeiten innerhalb der zweidimensionalen Zufallsgröße  $XY$  vollständig erfasst im Gegensatz zu den beiden eindimensionalen Dichtefunktionen   ⇒   Randwahrscheinlichkeitsdichtefunktionen:

$$f_{X}(x) = \int _{-\infty}^{+\infty} f_{XY}(x,y) \,\,{\rm d}y ,$$
$$f_{Y}(y) = \int_{-\infty}^{+\infty} f_{XY}(x,y) \,\,{\rm d}x .$$

Diese beiden Randdichtefunktionen  $f_X(x)$  und  $f_Y(y)$

  • liefern lediglich statistische Aussagen über die Einzelkomponenten  $X$  bzw.  $Y$,
  • nicht jedoch über die Bindungen zwischen diesen.


Als quantitatives Maß für die linearen statistischen Bindungen   ⇒   Korrelation  verwendet man

  • die  Kovarianz  $\mu_{XY}$, die bei mittelwertfreien Komponenten gleich dem gemeinsamen linearen Moment erster Ordnung ist:
$$\mu_{XY} = {\rm E}\big[X \cdot Y\big] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} X \cdot Y \cdot f_{XY}(x,y) \,{\rm d}x \, {\rm d}y ,$$
  • den  Korrelationskoeffizienten  nach Normierung auf die beiden Effektivwerte  $σ_X$  und $σ_Y$  der beiden Komponenten:
$$\rho_{XY}=\frac{\mu_{XY} }{\sigma_X \cdot \sigma_Y}.$$

$\text{Eigenschaften des Korrelationskoeffizienten:}$ 

  • Aufgrund der Normierung gilt stets  $-1 \le ρ_{XY} ≤ +1$.
  • Sind die beiden Zufallsgrößen  $X$  und  $Y$ unkorreliert, so ist  $ρ_{XY} = 0$.
  • Bei strenger linearer Abhängigkeit zwischen  $X$  und  $Y$ ist  $ρ_{XY}= ±1$   ⇒   vollständige Korrelation.
  • Ein positiver Korrelationskoeffizient bedeutet, dass bei größerem  $X$–Wert im statistischen Mittel auch  $Y$  größer ist als bei kleinerem  $X$.
  • Dagegen drückt ein negativer Korrelationskoeffizient aus, dass  $Y$  mit steigendem  $X$  im Mittel kleiner wird.



2D–WDF bei Gaußschen Zufallsgrößen

Für den Sonderfall  Gaußscher Zufallsgrößen  – der Name geht auf den Wissenschaftler  Carl Friedrich Gauß  zurück – können wir weiterhin vermerken:

  • Die Verbund–WDF einer Gaußschen 2D-Zufallsgröße  $XY$  mit Mittelwerten  $m_X = 0$  und  $m_Y = 0$  sowie dem Korrelationskoeffizienten  $ρ = ρ_{XY}$  lautet:
$$f_{XY}(x,y)=\frac{\rm 1}{\rm 2\it\pi \cdot \sigma_X \cdot \sigma_Y \cdot \sqrt{\rm 1-\rho^2}}\ \cdot\ \exp\Bigg[-\frac{\rm 1}{\rm 2 \cdot (1-\it\rho^{\rm 2} {\rm)}}\cdot(\frac {\it x^{\rm 2}}{\sigma_X^{\rm 2}}+\frac {\it y^{\rm 2}}{\sigma_Y^{\rm 2}}-\rm 2\it\rho\cdot\frac{x \cdot y}{\sigma_x \cdot \sigma_Y}\rm ) \rm \Bigg]\hspace{0.8cm}{\rm mit}\hspace{0.5cm}-1 \le \rho \le +1.$$
  • Ersetzt man  $x$  durch  $(x - m_X)$  sowie  $y$  durch  $(y- m_Y)$, so ergibt sich die allgemeinere WDF einer zweidimensionalen Gaußschen Zufallsgröße mit Mittelwert.
  • Die Randwahrscheinlichkeitsdichtefunktionen  $f_{X}(x)$  und  $f_{Y}(y)$  einer Gaußschen 2D-Zufallsgröße sind ebenfalls gaußförmig mit den Streuungen  $σ_X$  bzw.  $σ_Y$.
  • Bei unkorrelierten Komponenten  $X$  und  $Y$ muss in obiger Gleichung  $ρ = 0$  eingesetzt werden, und man erhält dann das Ergebnis:
$$f_{XY}(x,y)=\frac{1}{\sqrt{2\pi}\cdot\sigma_{X}} \cdot\rm e^{-\it {x^{\rm 2}}\hspace{-0.08cm}/{\rm (}{\rm 2\hspace{0.05cm}\it\sigma_{X}^{\rm 2}} {\rm )}} \cdot\frac{1}{\sqrt{2\pi}\cdot\sigma_{\it Y}}\cdot e^{-\it {y^{\rm 2}}\hspace{-0.08cm}/{\rm (}{\rm 2\hspace{0.05cm}\it\sigma_{Y}^{\rm 2}} {\rm )}} = \it f_{X} \rm ( \it x \rm ) \cdot \it f_{Y} \rm ( \it y \rm ) .$$

$\text{Fazit:}$  Im Sonderfall einer 2D-Zufallsgröße mit Gaußscher WDF  $f_{XY}(x, y)$  folgt aus der  Unkorreliertheit  auch direkt die  statistische Unabhängigkeit:

$$f_{XY}(x,y)= f_{X}(x) \cdot f_{Y}(y) . $$

Bitte beachten Sie:

  • Bei keiner anderen WDF kann aus der  Unkorreliertheit  auf die  statistische Unabhängigkeit  geschlossen werden.
  • Man kann aber stets   ⇒   für jede beliebige 2D–WDF  $f_{XY}(x, y)$  von der  statistischen Unabhängigkeit  auf die  Unkorreliertheit  schließen, weil:
  • Sind zwei Zufallsgrößen  $X$  und  $Y$  völlig voneinander (statistisch) unabhängig, so gibt es zwischen ihnen natürlich auch keine linearen  Abhängigkeiten  
    ⇒   sie sind dann auch unkorreliert  ⇒   $ρ = 0$.



Höhenlinien bei unkorrelierten Zufallsgrößen

rechts

Aus der Bedingungsgleichung  $f_{XY}(x, y) = {\rm const.}$  können die Höhenlinien der WDF berechnet werden.

Sind die Komponenten  $X$  und  $Y$ unkorreliert  $(ρ_{XY} = 0)$, so erhält man als Gleichung für die Höhenlinien:

$$\frac{x^{\rm 2}}{\sigma_{X}^{\rm 2}}+\frac{y^{\rm 2}}{\sigma_{Y}^{\rm 2}} =\rm const.$$

Die Höhenlinien beschreiben in diesem Fall folgende Figuren:

  • Kreise  (falls  $σ_X = σ_Y$,   grüne Kurve), oder
  • Ellipsen  (für  $σ_X ≠ σ_Y$,   blaue Kurve) in Ausrichtung der beiden Achsen.


Korrelationsgerade

Als  Korrelationsgerade  bezeichnet man die Gerade  $y = K(x)$  in der  $(x, y)$–Ebene durch den „Mittelpunkt” $(m_X, m_Y)$. Diese besitzt folgende Eigenschaften:

Gaußsche 2D-WDF (Approximation mit $N$ Messpunkten) und
Korrelationsgerade  $y = K(x)$
  • Die mittlere quadratische Abweichung von dieser Geraden – in  $y$–Richtung betrachtet und über alle  $N$  Messpunkte gemittelt – ist minimal:
$$\overline{\varepsilon_y^{\rm 2} }=\frac{\rm 1}{N} \cdot \sum_{\nu=\rm 1}^{N}\; \;\big [y_\nu - K(x_{\nu})\big ]^{\rm 2}={\rm Minimum}.$$
  • Die Korrelationsgerade kann als eine Art „statistische Symmetrieachse“ interpretiert werden. Die Geradengleichung lautet im allgemeinen Fall:
$$y=K(x)=\frac{\sigma_Y}{\sigma_X}\cdot\rho_{XY}\cdot(x - m_X)+m_Y.$$
  • Der Winkel, den die Korrelationsgerade zur  $x$–Achse einnimmt, beträgt:
$$\theta={\rm arctan}(\frac{\sigma_{Y} }{\sigma_{X} }\cdot \rho_{XY}).$$


Höhenlinien bei korrelierten Zufallsgrößen

Bei korrelierten Komponenten  $(ρ_{XY} ≠ 0)$  sind die Höhenlinien der WDF (fast) immer elliptisch, also auch für den Sonderfall  $σ_X = σ_Y$.

Ausnahme:  $ρ_{XY}=\pm 1$   ⇒   Diracwand; siehe  Aufgabe 4.4  im Buch „Stochastische Signaltheorie”, Teilaufgabe  (5).

Höhenlinien der 2D-WDF bei korrelierten Größen

Hier lautet die Bestimmungsgleichung der WDF-Höhenlinien:

$$f_{XY}(x, y) = {\rm const.} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \frac{x^{\rm 2} }{\sigma_{X}^{\rm 2}}+\frac{y^{\rm 2} }{\sigma_{Y}^{\rm 2} }-{\rm 2}\cdot\rho_{XY}\cdot\frac{x\cdot y}{\sigma_X\cdot \sigma_Y}={\rm const.}$$

Die Grafik zeigt in hellerem Blau für zwei unterschiedliche Parametersätze je eine Höhenlinie.

  • Die Ellipsenhauptachse ist dunkelblau gestrichelt.
  • Die  Korrelationsgerade  $K(x)$  ist durchgehend rot eingezeichnet.


Anhand dieser Darstellung sind folgende Aussagen möglich:

  • Die Ellipsenform hängt außer vom Korrelationskoeffizienten  $ρ_{XY}$  auch vom Verhältnis der beiden Streuungen  $σ_X$  und  $σ_Y$  ab.
  • Der Neigungswinkel  $α$  der Ellipsenhauptachse (gestrichelte Gerade) gegenüber der  $x$–Achse hängt ebenfalls von  $σ_X$,  $σ_Y$  und  $ρ_{XY}$  ab:
$$\alpha = {1}/{2} \cdot {\rm arctan } \big ( 2 \cdot \rho_{XY} \cdot \frac {\sigma_X \cdot \sigma_Y}{\sigma_X^2 - \sigma_Y^2} \big ).$$
  • Die (rote) Korrelationsgerade  $y = K(x)$  einer Gaußschen 2D–Zufallsgröße liegt stets unterhalb der (blau gestrichelten) Ellipsenhauptachse.
  • $K(x)$  kann aus dem Schnittpunkt der Höhenlinien und ihrer vertikalen Tangenten geometrisch konstruiert werden, wie in der Skizze in grüner Farbe angedeutet.



Zweidimensionale Verteilungsfunktion   ⇒   2D–VTF

$\text{Definition:}$  Die  2D-Verteilungsfunktion  ist ebenso wie die 2D-WDF lediglich eine sinnvolle Erweiterung der  eindimensionalen Verteilungsfunktion  (VTF):

$$F_{XY}(x,y) = {\rm Pr}\big [(X \le x) \cap (Y \le y) \big ] .$$


Es ergeben sich folgende Gemeinsamkeiten und Unterschiede zwischen der „1D-VTF” und der„ 2D-VTF”:

  • Der Funktionalzusammenhang zwischen „2D–WDF” und „2D–VTF” ist wie im eindimensionalen Fall durch die Integration gegeben, aber nun in zwei Dimensionen. Bei kontinuierlichen Zufallsgrößen gilt:
$$F_{XY}(x,y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(\xi,\eta) \,\,{\rm d}\xi \,\, {\rm d}\eta .$$
  • Umgekehrt lässt sich die Wahrscheinlichkeitsdichtefunktion aus der Verteilungsfunktion durch partielle Differentiation nach  $x$  und  $y$  angeben:
$$f_{XY}(x,y)=\frac{{\rm d}^{\rm 2} F_{XY}(\xi,\eta)}{{\rm d} \xi \,\, {\rm d} \eta}\Bigg|_{\left.{x=\xi \atop {y=\eta}}\right.}.$$
  • Bezüglich der Verteilungsfunktion  $F_{XY}(x, y)$  gelten folgende Grenzwerte:
$$F_{XY}(-\infty,\ -\infty) = 0,\hspace{0.5cm}F_{XY}(x,\ +\infty)=F_{X}(x ),\hspace{0.5cm} F_{XY}(+\infty,\ y)=F_{Y}(y ) ,\hspace{0.5cm}F_{XY}(+\infty,\ +\infty) = 1.$$
  • Im Grenzfall $($unendlich große  $x$  und  $y)$  ergibt sich demnach für die „2D-VTF” der Wert  $1$. Daraus erhält man die  Normierungsbedingung  für die 2D-Wahrscheinlichkeitsdichtefunktion:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{XY}(x,y) \,\,{\rm d}x \,\,{\rm d}y=1 . $$

$\text{Fazit:}$  Beachten Sie den signifikanten Unterschied zwischen eindimensionalen und zweidimensionalen Zufallsgrößen:

  • Bei eindimensionalen Zufallsgrößen ergibt die Fläche unter der WDF stets den Wert $1$.
  • Bei zweidimensionalen Zufallsgrößen ist das WDF-Volumen immer gleich $1$.



Exercises


  • Select the number  $(1,\ 2$, ... $)$  of the task to be processed.  The number "0" corresponds to a "Reset":  Setting as at the program start.
  • A task description is displayed.  Parameter values are adjusted.  Solution after pressing "Sample solution". 
  • In the task description, we sometimes use  $\rho$  instead of  $\rho_{XY}$.
  • For the one-dimensional probability density function  $\text{(1D–PDF)}$  holds:  $f_{X}(x) = \sqrt{1/(2\pi \cdot \sigma_X^2)} \cdot {\rm e}^{-x^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm} \sigma_X^2)}$.


Deutsch

  • Wählen Sie die Nummer  $(1,\ 2$, ... $)$  der zu bearbeitenden Aufgabe.  Die Nummer  „0” entspricht einem „Reset”:  Einstellung wie beim Programmstart.
  • Eine Aufgabenbeschreibung wird angezeigt.  Die Parameterwerte sind angepasst.  Lösung nach Drücken von „Musterlösung”. 
  • Bei der Aufgabenbeschreibung verwenden wir teilweise  $\rho$  anstelle von  $\rho_{XY}$.
  • Für die eindimensionale Wahrscheinlichkeitsdichtefunktion  $\text{(1D–WDF)}$  gilt:  $f_{X}(x) = \sqrt{1/(2\pi \cdot \sigma_X^2)} \cdot {\rm e}^{-x^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm} \sigma_X^2)}$.


(1)  Get familiar with the program using the default  $(\sigma_X=1, \ \sigma_Y=0.5, \ \rho = 0.7)$.  Interpret the graphs for  $\rm PDF$  and  $\rm CDF$.

  •  $\rm PDF$  is a "ridge" with the maximum at  $x = 0, \ y = 0$.  The ridge is slightly twisted with respect to the  $x$–axis.
  •  $\rm CDF$  is obtained from  $\rm PDF$  by continuous integration in both directions.  The maximum $($near  $1)$  occurs at  $x=3, \ y=3$ .

(1)  Machen Sie sich anhand der Voreinstellung  $(\sigma_X=1, \ \sigma_Y=0.5, \ \rho = 0.7)$  mit dem Programm vertraut. Interpretieren Sie die Grafiken für  $\rm WDF$  und  $\rm VTF$.

  •  $\rm WDF$  ist ein Bergrücken mit dem Maximum bei  $x = 0, \ y = 0$. Der Bergkamm ist leicht verdreht gegenüber der  $x$–Achse.
  •  $\rm VTF$  ergibt sich aus  $\rm WDF$  durch fortlaufende Integration in beide Richtungen. Das Maximum $($nahezu  $1)$  tritt bei  $x=3, \ y=3$  auf.


(2)  Now the setting is   $\sigma_X= \sigma_Y=1, \ \rho = 0$.  What are the values for  $f_{XY}(0,\ 0)$  and  $F_{XY}(0,\ 0)$?  Interpret the results.

  •  The PDF maximum is  $f_{XY}(0,\ 0) = 1/(2\pi)= 0.1592$, because of  $\sigma_X= \sigma_Y = 1, \ \rho = 0$. The contour lines are circles.
  •  For the VTF value holds:  $F_{XY}(0,\ 0) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 0)] = 0.25$. Slight deviation due to numerical integration.


(2)  Nun lautet die Einstellung  $\sigma_X= \sigma_Y=1, \ \rho = 0$. Welche Werte ergeben sich für  $f_{XY}(0,\ 0)$  und  $F_{XY}(0,\ 0)$? Interpretieren Sie die Ergebnisse.

  •  Das WDF–Maximum ist  $f_{XY}(0,\ 0) = 1/(2\pi)= 0.1592$, wegen  $\sigma_X= \sigma_Y = 1, \ \rho = 0$. Die Höhenlinien sind Kreise.
  •  Für den VTF-Wert gilt:  $F_{XY}(0,\ 0) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 0)] = 0.25$. Geringfügige Abweichung wegen numerischer Integration.

(3)  Es gelten weiter die Einstellungen von (2). Welche Werte ergeben sich für  $f_{XY}(0,\ 1)$  und  $F_{XY}(0,\ 1)$? Interpretieren Sie die Ergebnisse.

  •  Es gilt  $f_{XY}(0,\ 1) = f_{X}(0) \cdot f_{Y}(1) = [ \sqrt{1/(2\pi)}] \cdot [\sqrt{1/(2\pi)} \cdot {\rm e}^{-0.5}] = 1/(2\pi) \cdot {\rm e}^{-0.5} = 0.0965$.
  •  Das Programm liefert  $F_{XY}(0,\ 1) = [{\rm Pr}(X \le 0)] \cdot [{\rm Pr}(Y \le 1)] = 0.4187$, also einen größeren Wert als in (2), da weiter integriert wird.

(4)  Die Einstellungen bleiben erhalten. Welche Werte ergeben sich für  $f_{XY}(1,\ 0)$  und  $F_{XY}(1,\ 0)$? Interpretieren Sie die Ergebnisse.

  •  Aufgrund der Rotationssysmmetrie gleiche Ergebnisse wie in (3).

(5)  Stimmt die Aussage: „Elliptische Höhenlinien gibt es nur für  $\rho \ne 0$”. Interpretieren Sie die  $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  und $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$  für  $\sigma_X=1, \ \sigma_Y=0.5$  und  $\rho = 0$.

  •  Nein! Auch für  $\ \rho = 0$  sind die Höhenlinien elliptisch (nicht kreisförmig), falls  $\sigma_X \ne \sigma_Y$.
  •  Für $\sigma_X \gg \sigma_Y$  hat die  $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  die Form eines langgestreckten Bergkamms parallel zur  $x$–Achse, für $\sigma_X \ll \sigma_Y$  parallel zur  $y$–Achse.
  •  Für $\sigma_X \gg \sigma_Y$  ist der Anstieg der  $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$  in Richtung der  $y$–Achse deutlich steiler als in Richtung der  $x$–Achse.

(6)  Variieren Sie ausgehend von  $\sigma_X=\sigma_Y=1, \ \rho = 0.7$  den Korrelationskoeffizienten  $\rho$. Wie groß ist der Neigungswinkel  $\alpha$  der Ellipsen–Hauptachse?

  •  Für  $\rho > 0$  ist  $\alpha = 45^\circ$  und für  $\rho < 0$  ist  $\alpha = -45^\circ$. Für  $\rho = 0$  sind die Höhenlinien kreisfömig und somit gibt es auch keine Ellipsen–Hauptachse.

(7)  Variieren Sie ausgehend von  $\sigma_X=\sigma_Y=1, \ \rho = 0.7$  den Korrelationskoeffizienten  $\rho > 0$. Wie groß ist der Neigungswinkel  $\theta$  der Korrelationsgeraden  $K(x)$?

  •  Für  $\sigma_X=\sigma_Y$  ist  $\theta={\rm arctan}\ (\rho)$. Die Steigung nimmt mit wachsendem  $\rho > 0$  zu. In allen Fällen gilt  $\theta < \alpha = 45^\circ$. Für  $\rho = 0.7$  ergibt sich  $\theta = 35^\circ$.

(8)  Variieren Sie ausgehend von  $\sigma_X=\sigma_Y=0.75, \ \rho = 0.7$  die Parameter  $\sigma_Y$  und  $\rho \ (>0)$. Welche Aussagen gelten für die Winkel  $\alpha$  und  $\theta$?

  •  Für  $\sigma_Y<\sigma_X$  ist  $\alpha < 45^\circ$  und für  $\sigma_Y>\sigma_X$  dagegen  $\alpha > 45^\circ$.
  •  Bei allen Einstellungen gilt:  Die Korrelationsgerade liegt unter der Ellipsen–Hauptachse.

(9)  Gehen Sie von  $\sigma_X= 1, \ \sigma_Y=0.75, \ \rho = 0.7$  aus und variieren Sie  $\rho$. Wie könnte man die Korrelationsgerade aus den Höhenlinien konstruieren?

  •  Die Korrelationsgerade schneidet alle Höhenlinien an den Punkten, an denen die Tangente zu der Höhenlinie senkrecht verläuft.

(10)  Nun gelte  $\sigma_X= \sigma_Y=1, \ \rho = 0.95$. Interpretieren Sie die  $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$. Welche Aussagen würden für den Grenzfall  $\rho \to 1$  zutreffen?

  •  Die  $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  hat nur Anteile in der Nähe der Ellipsen–Hauptachse. Die Korrelationsgerade liegt nur knapp darunter:  $\alpha = 45^\circ, \ \theta = 43.5^\circ$.
  •  Im Grenzfall  $\rho \to 1$  wäre  $\theta = \alpha = 45^\circ$. Außerhalb der Korrelationsgeraden hätte die  $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  keine Anteile. Das heißt:
  •  Längs der Korrelationsgeraden ergäbe sich eine Diracwand  ⇒   Alle Werte sind unendlich groß, trotzdem um den Mittelwert gaußisch gewichtet.




Applet Manual


Anleitung 2D-Gauss.png

    (A)     Parametereingabe per Slider:  $\sigma_X$,  $\sigma_Y$ und  $\rho$

    (B)     Auswahl:  Darstellung von WDF oder VTF

    (C)     Reset:  Einstellung wie beim Programmstart

    (D)     Höhenlinien darstellen anstelle von „1D-WDF”

    (E)     Darstellungsbereich für „2D-WDF”

    (F)     Manipulation der 3D-Grafik (Zoom, Drehen, ...)

    (G)     Darstellungsbereich für „1D-WDF” bzw. „Höhenlinien”

    (H)     Manipulation der 2D-Grafik („1D-WDF”)

    ( I )     Bereich für die Versuchsdurchführung: Aufgabenauswahl

    (J)     Bereich für die Versuchsdurchführung: Aufgabenstellung

    (K)     Bereich für die Versuchsdurchführung: Musterlösung einblenden

    ( L)     Bereich für die Versuchsdurchführung: Musterlösung







Werte–Ausgabe über Maussteuerung (sowohl bei 2D als auch bei 3D)


About the Authors

This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2003 by  Ji Li  as part of her bachelor thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • In 2019 the program was redesigned by  Carolin Mirschina  in the context of a working student activity.  Translation using DEEPL.com.


The conversion of this applet to HTML 5 was financially supported by  "Studienzuschüsse"  (Faculty EI of the TU Munich).  We thank.


Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen