Difference between revisions of "Aufgaben:Exercise 2.1Z: DSB-AM without/with Carrier"
m (Text replacement - "Category:Aufgaben zu Modulationsverfahren" to "Category:Modulation Methods: Exercises") |
|||
Line 86: | Line 86: | ||
− | [[File: | + | [[File:EN_Mod_Z_2_1_d.png|right|frame|ZSB–AM–Spektrum $Z(f)$, $Q(f)$ und $S(f)$]] |
'''(4)''' Das Spektrum $S(f)$ ergibt sich aus der Faltung der Spektralfunktionen $Z(f)$ und $Q(f)$, die jeweils aus nur zwei Diracfunktionen bestehen. Die Grafik zeigt das Ergebnis. | '''(4)''' Das Spektrum $S(f)$ ergibt sich aus der Faltung der Spektralfunktionen $Z(f)$ und $Q(f)$, die jeweils aus nur zwei Diracfunktionen bestehen. Die Grafik zeigt das Ergebnis. | ||
*Die rot eingezeichneten Diracfunktionen gelten nur für die „ZSB–AM mit Träger” und beziehen sich auf die Teilaufgabe ('''6)'''. | *Die rot eingezeichneten Diracfunktionen gelten nur für die „ZSB–AM mit Träger” und beziehen sich auf die Teilaufgabe ('''6)'''. |
Revision as of 16:49, 18 October 2021
Die Grafik zeigt als rote Kurve einen Ausschnitt des Sendesignals $s(t) = q(t) · z(t)$ einer Zweiseitenband–Amplitudenmodulation (abgekürzt mit ZSB-AM) ohne Träger. Die Dauer des Zeitausschnitts beträgt $\rm 200 \ µ s$.
Zusätzlich sind in der Grafik eingetragen:
- das Quellensignal (als blau–gestrichelte Kurve):
- $$q(t) = 1\,{\rm V} \cdot \cos(2 \pi f_{\rm N} t + \phi_{\rm N}),$$
- das Trägersignal (grau–gepunkteter Verlauf):
- $$z(t) = 1 \cdot \cos(2 \pi f_{\rm T} t + \phi_{\rm T})$$
Ab der Teilaufgabe (4) wird die „ZSB–AM mit Träger” betrachtet. Dann gilt mit $A_{\rm T} = 2\text{ V}$:
- $$s(t) = \left(q(t) + A_{\rm T} \right) \cdot z(t) \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Zweiseitenband-Amplitudenmodulation.
- Bezug genommen wird insbesondere auf die Seiten Beschreibung im Zeitbereich und ZSB-Amplitudenmodulation mit Träger.
Fragebogen
Musterlösung
(2) Aus der Grafik können für $q(t)$ und $z(t)$ die Periodendauern $200$ μs bzw. $20$ μs abgelesen werden.
- Daraus ergeben sich die Frequenzen zu $f_{\rm N} \hspace{0.15cm}\underline { = 5}$ kHz und $f_{\rm T} \hspace{0.15cm}\underline { = 50}$ kHz.
(3) Richtig sind die Lösungsvorschläge 1 und 2:
- Die Nullstellen von $z(t)$ bei $±5$ μs, $±15$ μs, $±25$ μs, ... sind auch im Signal $s(t)$ vorhanden ⇒ Aussage 1 ist richtig.
- Weitere Nullstellen von $s(t)$ – verursacht durch $q(t)$ – liegen bei $±50$ μs, $±150$ μs, $±250$ μs, .... ⇒ Aussage 2 ist richtig.
- Die dritte Aussage trifft dagegen nicht zu, sondern es gilt: $ s(t) = a(t) \cdot \cos[\omega_{\rm T} t + \phi (t)] \hspace{0.05cm}.$
- Für $q(t) > 0$ ist die Phasenfunktion $ϕ(t) = 0$ und $s(t)$ ist gleichlaufend mit $z(t)$.
- Dagegen gilt für $q(t) < 0$: $ϕ(t) = π = 180^\circ$.
- Bei den Nulldurchgängen von $q(t)$ weist das modulierte Signal $s(t)$ Phasensprünge auf.
(4) Das Spektrum $S(f)$ ergibt sich aus der Faltung der Spektralfunktionen $Z(f)$ und $Q(f)$, die jeweils aus nur zwei Diracfunktionen bestehen. Die Grafik zeigt das Ergebnis.
- Die rot eingezeichneten Diracfunktionen gelten nur für die „ZSB–AM mit Träger” und beziehen sich auf die Teilaufgabe (6).
- Die Faltung der beiden $Z(f)$–Diracfunktionen bei $f_{\rm T} = 50\text{ kHz}$ mit $Q(f)$ führt zu den Diraclinien bei $f_{\rm T} - f_{\rm N}$ und $f_{\rm T} + f_{\rm N}$, jeweils mit Gewicht $0.5 · 0.5\text{ V}= 0.25\text{ V}$.
- Die gesuchten Werte sind somit $f_1\hspace{0.15cm}\underline { = 45 \ \rm kHz}$ und $f_1\hspace{0.15cm}\underline { = 55 \ \rm kHz}$.
- Die mit zwei Markierungsstrichen versehene Diracfunktion $0.5 · δ(f + f_{\rm T})$ führt zu zwei weiteren Diraclinien bei $-f_1$ und $-f_2$.
(5) Der Modulationsgrad berechnet sich zu:
- $$ m = \frac{q_{\rm max}}{A_{\rm T}} = \frac{A_{\rm N}}{A_{\rm T}} \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
(6) Richtig sind die Lösungsvorschläge 1 und 3:
- Gemäß der Skizze ergeben sich Diraclinien bei $±f_{\rm T}$, beide mit dem Impulsgewicht $A_{\rm T}/2 = 1\text{ V}$.
- Bei $m ≤ 1$ ist $q(t)$ in der Hüllkurve erkennbar und Hüllkurvendemodulation anwendbar.
- Allerdings muss diese einfachere Empfängervariante durch eine sehr viel größere Sendeleistung erkauft werden.
- In diesem Beispiel $(m = 0.5)$ wird die Sendeleistung durch den Trägerzusatz verneunfacht.