Difference between revisions of "Aufgaben:Exercise 3.1: Impulse Response of the Coaxial Cable"

From LNTwww
m (Text replacement - "”" to """)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference
 
}}
 
}}
  
[[File:P_ID1370__Dig_A_3_1.png|right|frame|Impulsantwort eines Koaxialkabels]]
+
[[File:P_ID1370__Dig_A_3_1.png|right|frame|Impulse response of a coaxial cable]]
Der Frequenzgang eines Koaxialkabels der Länge  $l$  ist durch folgende Formel darstellbar:
+
The frequency response of a coaxial cable of length  $l$  can be represented by the following formula:
 
:$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}
 
:$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}
 
   \cdot  
 
   \cdot  
Line 11: Line 11:
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
  
Der erste Term dieser Gleichung ist auf die Ohmschen Verluste zurückzuführen, der zweite Term auf die Querverluste. Dominant ist jedoch der Skineffekt, der durch den dritten Term ausgedrückt wird.
+
The first term of this equation is due to the ohmic losses, and the second term is due to the transverse losses. Dominant, however, is the skin effect, which is expressed by the third term.
  
Mit den für ein so genanntes Normalkoaxialkabel  $(2.6 \ \rm mm$  Kerndurchmesser und  $9.5 \ \rm mm$  Außendurchmesser$)$ gültigen Koeffizienten
+
With the coefficients valid for a so-called standard coaxial cable  $(2.6 \ \rm mm$  core diameter and  $9.5 \ \rm mm$  outer diameter$)$
 
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 
   \hspace{0.05cm},
 
   \hspace{0.05cm},
 
   \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac{\rm rad}{\rm km \cdot \sqrt{\rm MHz}}\hspace{0.05cm}.$$
 
   \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac{\rm rad}{\rm km \cdot \sqrt{\rm MHz}}\hspace{0.05cm}.$$
  
lässt sich dieser Frequenzgang auch wie folgt darstellen:
+
this frequency response can also be represented as follows:
 
:$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km}
 
:$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km}
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 
   \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
Line 25: Line 25:
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
  
Das heißt:   Dämpfungsverlauf  $a_{\rm K}(f)$  und Phasenverlauf  $b_{\rm K}(f)$  sind bis auf die Pseudoeinheiten "$\rm Np$" bzw. "$\rm rad$" identisch.
+
That means:   attenuation curve  $a_{\rm K}(f)$  and phase curve  $b_{\rm K}(f)$  are identical except for the pseudo units "$\rm Np$" and "$\rm rad$".
  
Definiert man die charakteristische Kabeldämpfung  $a_*$  bei der halben Bitrate  $(R_{\rm B}/2)$, so kann man Digitalsysteme unterschiedlicher Bitrate und Länge einheitlich behandeln:
+
If one defines the characteristic cable attenuation  $a_*$  at half the bit rate  $(R_{\rm B}/2)$, one can treat digital systems of different bit rate and length uniformly:
 
:$$a_{\star} = a_{\rm K}(f = {R_{\rm B}}/{2})
 
:$$a_{\star} = a_{\rm K}(f = {R_{\rm B}}/{2})
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-
 
a_{\star} \cdot \sqrt{2f/R_{\rm
 
a_{\star} \cdot \sqrt{2f/R_{\rm
 
   B}}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} a_{\star} \cdot \sqrt{2f/R_{\rm
 
   B}}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} a_{\star} \cdot \sqrt{2f/R_{\rm
   B}}}\hspace{0.4cm}{\rm mit}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
+
   B}}}\hspace{0.4cm}{\rm with}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Der entsprechende  $\rm dB$–Wert ist um den Faktor  $8.688$  größer. Bei einem Binärsystem gilt  $R_{\rm B} = 1/T$, so dass sich dann die charakteristische Kabeldämpfung auf die Frequenz  $f = 1/(2T)$  bezieht.
+
The corresponding  $\rm dB$ value is larger by a factor of  $8.688$.  For a binary system,  $R_{\rm B} = 1/T$ applies, so that the characteristic cable attenuation is then related to the frequency  $f = 1/(2T)$. 
  
  
Die Fouriertransformierte von  $H_{\rm K}(f)$  liefert die Impulsantwort  $h_{\rm K}(t)$, die für ein Koaxialkabel mit den hier beschriebenen Näherungen in geschlossen-analytischer Form angebbar ist. Für ein Binärsystem gilt:  
+
The Fourier transform of  $H_{\rm K}(f)$  yields the impulse response  $h_{\rm K}(t)$, which can be given in closed-analytic form for a coaxial cable with the approximations described here. For a binary system holds:
 
:$$h_{\rm K}(t) =  \frac{ a_{\star}/T}{  \sqrt{2  \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot
 
:$$h_{\rm K}(t) =  \frac{ a_{\star}/T}{  \sqrt{2  \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot
 
   {\rm exp} \left[ - \frac{a_{\star}^2}{2  \pi  \cdot t/T}\hspace{0.1cm}\right]
 
   {\rm exp} \left[ - \frac{a_{\star}^2}{2  \pi  \cdot t/T}\hspace{0.1cm}\right]
   \hspace{0.4cm}{\rm mit}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
+
   \hspace{0.4cm}{\rm with}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die Teilaufgabe '''(5)''' bezieht sich auf den Empfangsgrundimpuls  $g_r(t) = g_s(t) * h_K(t)$, wobei für  $g_s(t)$  ein Rechteckimpuls mit der Höhe  $s_0$  und der Dauer  $T$  angenommen werden soll.
+
Subtask '''(5)''' is related to the basic receiver pulse  $g_r(t) = g_s(t) * h_K(t)$, where  $g_s(t)$  should be assumed to be a rectangular pulse with height  $s_0$  and duration  $T$.   
  
  
Line 51: Line 51:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignal%C3%BCbertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Ursachen und Auswirkungen von Impulsinterferenzen]].
+
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|Causes and Effects of Intersymbol Interference]].
*Bezug genommen wird insbesondere auf den Abschnitt  [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume|Signale, Basisfunktionen und Vektorräume]].
+
*Reference is made in particular to the section  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|Signals, Basis Functions and Vector Spaces]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Länge &nbsp;$l$&nbsp; eines Normalkoaxialkabels, wenn sich für die Bitrate &nbsp;$R_{\rm B} = 140 \ \rm Mbit/s$&nbsp; die charakteristische Kabeldämpfung zu &nbsp;$a_* = 60 \ \rm dB$&nbsp; ergibt?
+
{What is the length &nbsp;$l$&nbsp; of a standard coaxial cable, if for the bit rate &nbsp;$R_{\rm B} = 140 \ \rm Mbit/s$&nbsp; the characteristic cable attenuation is &nbsp;$a_* = 60 \ \rm dB$?&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
$l \ = \ $ { 3 3% } $\ \rm km $
 
$l \ = \ $ { 3 3% } $\ \rm km $
  
{Zu welcher Zeit &nbsp;$t_{\rm max}$&nbsp; besitzt &nbsp;$h_K(t)$&nbsp; sein Maximum? Es gelte weiter &nbsp;$a_* = 60 \ \rm dB$.
+
{At what time &nbsp;$t_{\rm max}$&nbsp; does &nbsp;$h_K(t)$&nbsp; have its maximum? Let &nbsp;$a_* = 60 \ \rm dB$ be further valid.
 
|type="{}"}
 
|type="{}"}
 
$t_{\rm max}/T= \ $ { 5 3% }  
 
$t_{\rm max}/T= \ $ { 5 3% }  
  
{Wie groß ist der Maximalwert der Impulsantwort? Es gelte weiter &nbsp;$a_* = 60 \ \rm dB$.
+
{What is the maximum value of the impulse response? Let &nbsp;$a_* = 60 \ \rm dB$ continue to hold.
 
|type="{}"}
 
|type="{}"}
 
${\rm Max}\  \big [h_{\rm K}(t)\big ]= \ $ { 0.03 3% } $\ \cdot 1/T $
 
${\rm Max}\  \big [h_{\rm K}(t)\big ]= \ $ { 0.03 3% } $\ \cdot 1/T $
  
{Ab welcher Zeit &nbsp;$t_{\rm 5\%}$&nbsp; ist &nbsp;$h_{\rm K}(t)$&nbsp; kleiner als &nbsp;$5\%$&nbsp; des Maximums? Berücksichtigen Sie als Näherung nur den ersten Term der angegebenen Formel.
+
{At what time &nbsp;$t_{\rm 5\%}$&nbsp; is &nbsp;$h_{\rm K}(t)$&nbsp; less than &nbsp;$5\%$&nbsp; of the maximum? Consider only the first term of the given formula as an approximation.
 
|type="{}"}
 
|type="{}"}
 
$t_{\rm 5\%}/T= \ $ { 103.5 3% }   
 
$t_{\rm 5\%}/T= \ $ { 103.5 3% }   
  
{Welche Aussagen treffen für den Empfangsgrundimpuls &nbsp;$g_r(t)$&nbsp; zu?
+
{Which statements are true for the basic receiver pulse &nbsp;$g_r(t)$?&nbsp;
 
|type="[]"}
 
|type="[]"}
- $g_r(t)$&nbsp; ist doppelt so breit wie &nbsp;$h_{\rm K}(t)$.
+
- $g_r(t)$&nbsp; is twice as wide as &nbsp;$h_{\rm K}(t)$.
+ Es gilt näherungsweise &nbsp;$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T$.
+
+ It is approximately &nbsp;$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T$.
- $g_r(t)$&nbsp; kann durch einen Gaußimpuls angenähert werden.
+
- $g_r(t)$&nbsp; can be approximated by a Gaussian pulse.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die charakteristische Kabeldämpfung $a_* = 60 \ \rm dB$ entspricht etwa $6.9 \ \rm Np$. Deshalb muss gelten:
+
'''(1)'''&nbsp; The characteristic cable attenuation $a_* = 60 \ \rm dB$ corresponds to about $6.9 \ \rm Np$. Therefore, it must hold:
 
:$$\alpha_2 \cdot l \cdot {R_{\rm B}}/{2} = 6.9\,\,{\rm
 
:$$\alpha_2 \cdot l \cdot {R_{\rm B}}/{2} = 6.9\,\,{\rm
 
Np}
 
Np}
Line 95: Line 95:
  
  
'''(2)'''&nbsp; Mit den Substitutionen
+
'''(2)'''&nbsp; With the substitutions
 
:$$x =  { t}/{  T}, \hspace{0.2cm} K_1 = \frac{a_*/T}{\sqrt{2\pi^2 }}, \hspace{0.2cm}
 
:$$x =  { t}/{  T}, \hspace{0.2cm} K_1 = \frac{a_*/T}{\sqrt{2\pi^2 }}, \hspace{0.2cm}
 
   K_2 = \frac{a_*^2}{2\pi}$$
 
   K_2 = \frac{a_*^2}{2\pi}$$
  
kann die Impulsantwort wie folgt beschrieben werden
+
the impulse response can be described as follows:
 
:$$h_{\rm K}(x) =  K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x}
 
:$$h_{\rm K}(x) =  K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Durch Nullsetzen der Ableitung folgt daraus:
+
By setting the derivative to zero, it follows:
 
:$$- {3}/{2} \cdot  K_1 \cdot x^{-5/2}\cdot {\rm e}^{-K_2/x}+ K_1 \cdot x^{-3/2}\cdot {\rm
 
:$$- {3}/{2} \cdot  K_1 \cdot x^{-5/2}\cdot {\rm e}^{-K_2/x}+ K_1 \cdot x^{-3/2}\cdot {\rm
 
   e}^{-K_2/x}\cdot (-K_2) \cdot (-x^{-2})= 0
 
   e}^{-K_2/x}\cdot (-K_2) \cdot (-x^{-2})= 0
Line 112: Line 112:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Daraus ergibt sich für $60 \ \rm dB$ Kabeldämpfung $(a_* &asymp; 6.9 \ \rm Np)$:
+
This gives for $60 \ \rm dB$ cable attenuation $(a_* &asymp; 6.9 \ \rm Np)$:
 
:$$x_{\rm max} =  { t_{\rm max}}/{  T} \hspace{-0.1cm}: \hspace{0.2cm} { t_{\rm max}}/{  T} = { 6.9^2}/({3\pi})\hspace{0.15cm}\underline {\approx 5} \hspace{0.2cm}.$$
 
:$$x_{\rm max} =  { t_{\rm max}}/{  T} \hspace{-0.1cm}: \hspace{0.2cm} { t_{\rm max}}/{  T} = { 6.9^2}/({3\pi})\hspace{0.15cm}\underline {\approx 5} \hspace{0.2cm}.$$
  
  
'''(3)'''&nbsp; Setzt man das Ergebnis von (2) in die vorgegebene Gleichung ein, so erhält man (wir verwenden $a$ anstelle von $a_*$):
+
'''(3)'''&nbsp; Substituting the result of (2) into the given equation, we obtain (we use $a$ instead of $a_*$):
 
:$$h_{\rm K}(t_{\rm max})  \ = \  \frac{1}{T} \cdot \frac{ a}{  \sqrt{2  \pi^2 \cdot \frac{a^6}{(3\pi)^3}}}\hspace{0.1cm} \cdot
 
:$$h_{\rm K}(t_{\rm max})  \ = \  \frac{1}{T} \cdot \frac{ a}{  \sqrt{2  \pi^2 \cdot \frac{a^6}{(3\pi)^3}}}\hspace{0.1cm} \cdot
 
   {\rm exp} \left[ - \frac{a^2}{2\pi} \cdot
 
   {\rm exp} \left[ - \frac{a^2}{2\pi} \cdot
Line 124: Line 124:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Mit $a = 6.9$ kommt man somit zum Endergebnis:
+
Thus, with $a = 6.9$, we arrive at the final result:
 
:$${\rm Max} \ [h_{\rm K}(t)]  = \frac{1.453}{{6.9\,}^2} \cdot {1}/{T}\hspace{0.15cm}\underline {\approx  0.03 \cdot {1}/{T}}
 
:$${\rm Max} \ [h_{\rm K}(t)]  = \frac{1.453}{{6.9\,}^2} \cdot {1}/{T}\hspace{0.15cm}\underline {\approx  0.03 \cdot {1}/{T}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Mit dem Ergebnis der Teilaufgabe (3) lautet die Bestimmungsgleichung:
+
'''(4)'''&nbsp; Using the result of subtask (3), the determining equation is:
 
:$$\frac{ a/T}{  \sqrt{2  \pi^2 \cdot (t_{5\%}/T)^3}}= 0.05 \cdot 0.03 \cdot {1}/{T}= 0.0015  \cdot {1}/{T} \hspace{0.3cm}
 
:$$\frac{ a/T}{  \sqrt{2  \pi^2 \cdot (t_{5\%}/T)^3}}= 0.05 \cdot 0.03 \cdot {1}/{T}= 0.0015  \cdot {1}/{T} \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}  (t_{5\%}/T)^{3/2} = \frac{a}{\sqrt{2} \cdot \pi \cdot
 
\Rightarrow \hspace{0.3cm}  (t_{5\%}/T)^{3/2} = \frac{a}{\sqrt{2} \cdot \pi \cdot
Line 135: Line 135:
 
   \hspace{0.3cm}t_{5\%}/T \hspace{0.15cm}\underline {\approx 103.5}\hspace{0.05cm}.$$
 
   \hspace{0.3cm}t_{5\%}/T \hspace{0.15cm}\underline {\approx 103.5}\hspace{0.05cm}.$$
  
Dieser Wert ist etwas zu groß, da der zweite Term ${\rm e}^{\rm &ndash; 0.05} &asymp; 0.95$ vernachlässigt wurde. Die exakte Berechnung liefert $t_{\rm 5\%}/T &asymp; 97$.
+
This value is slightly too large because the second term ${\rm e}^{\rm &ndash; 0.05} &asymp; 0.95$ was neglected. The exact calculation gives $t_{\rm 5\%}/T &asymp; 97$.
  
  
'''(5)'''&nbsp; Richtig ist der <u>zweite Lösungsvorschlag</u>. Allgemein gilt:
+
'''(5)'''&nbsp; The <u>second solution</u> is correct. In general:
 
:$$g_r(t) = g_s(t) \star h_{\rm K}(t) = s_0 \cdot
 
:$$g_r(t) = g_s(t) \star h_{\rm K}(t) = s_0 \cdot
 
\int_{t-T/2}^{t+T/2} h_{\rm K}(\tau) \,{\rm d} \tau .$$
 
\int_{t-T/2}^{t+T/2} h_{\rm K}(\tau) \,{\rm d} \tau .$$
  
Da sich die Kanalimpulsantwort $h_{\rm K}(t)$ innerhalb einer Symboldauer nur unwesentlich verändert, kann hierfür auch geschrieben werden:
+
Since the channel impulse response $h_{\rm K}(t)$ changes only insignificantly within a symbol duration, it can also be written for this purpose:
 
:$$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T .$$
 
:$$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T .$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 10:09, 25 April 2022

Impulse response of a coaxial cable

The frequency response of a coaxial cable of length  $l$  can be represented by the following formula:

$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l} \cdot \ {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l} \hspace{0.05cm}.$$

The first term of this equation is due to the ohmic losses, and the second term is due to the transverse losses. Dominant, however, is the skin effect, which is expressed by the third term.

With the coefficients valid for a so-called standard coaxial cable  $(2.6 \ \rm mm$  core diameter and  $9.5 \ \rm mm$  outer diameter$)$

$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km \cdot \sqrt{\rm MHz}} \hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac{\rm rad}{\rm km \cdot \sqrt{\rm MHz}}\hspace{0.05cm}.$$

this frequency response can also be represented as follows:

$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}} \hspace{0.05cm}.$$

That means:   attenuation curve  $a_{\rm K}(f)$  and phase curve  $b_{\rm K}(f)$  are identical except for the pseudo units "$\rm Np$" and "$\rm rad$".

If one defines the characteristic cable attenuation  $a_*$  at half the bit rate  $(R_{\rm B}/2)$, one can treat digital systems of different bit rate and length uniformly:

$$a_{\star} = a_{\rm K}(f = {R_{\rm B}}/{2}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{- a_{\star} \cdot \sqrt{2f/R_{\rm B}}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} a_{\star} \cdot \sqrt{2f/R_{\rm B}}}\hspace{0.4cm}{\rm with}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$

The corresponding  $\rm dB$ value is larger by a factor of  $8.688$.  For a binary system,  $R_{\rm B} = 1/T$ applies, so that the characteristic cable attenuation is then related to the frequency  $f = 1/(2T)$. 


The Fourier transform of  $H_{\rm K}(f)$  yields the impulse response  $h_{\rm K}(t)$, which can be given in closed-analytic form for a coaxial cable with the approximations described here. For a binary system holds:

$$h_{\rm K}(t) = \frac{ a_{\star}/T}{ \sqrt{2 \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot {\rm exp} \left[ - \frac{a_{\star}^2}{2 \pi \cdot t/T}\hspace{0.1cm}\right] \hspace{0.4cm}{\rm with}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$

Subtask (5) is related to the basic receiver pulse  $g_r(t) = g_s(t) * h_K(t)$, where  $g_s(t)$  should be assumed to be a rectangular pulse with height  $s_0$  and duration  $T$. 




Notes:



Questions

1

What is the length  $l$  of a standard coaxial cable, if for the bit rate  $R_{\rm B} = 140 \ \rm Mbit/s$  the characteristic cable attenuation is  $a_* = 60 \ \rm dB$? 

$l \ = \ $

$\ \rm km $

2

At what time  $t_{\rm max}$  does  $h_K(t)$  have its maximum? Let  $a_* = 60 \ \rm dB$ be further valid.

$t_{\rm max}/T= \ $

3

What is the maximum value of the impulse response? Let  $a_* = 60 \ \rm dB$ continue to hold.

${\rm Max}\ \big [h_{\rm K}(t)\big ]= \ $

$\ \cdot 1/T $

4

At what time  $t_{\rm 5\%}$  is  $h_{\rm K}(t)$  less than  $5\%$  of the maximum? Consider only the first term of the given formula as an approximation.

$t_{\rm 5\%}/T= \ $

5

Which statements are true for the basic receiver pulse  $g_r(t)$? 

$g_r(t)$  is twice as wide as  $h_{\rm K}(t)$.
It is approximately  $g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T$.
$g_r(t)$  can be approximated by a Gaussian pulse.


Solution

(1)  The characteristic cable attenuation $a_* = 60 \ \rm dB$ corresponds to about $6.9 \ \rm Np$. Therefore, it must hold:

$$\alpha_2 \cdot l \cdot {R_{\rm B}}/{2} = 6.9\,\,{\rm Np} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} l = \frac{6.9\,\,{\rm Np}}{0.2722\,\,\frac{\rm Np}{{\rm km} \cdot \sqrt{\rm MHz}} \cdot \sqrt{70\,\,{\rm MHz}}} \hspace{0.15cm}\underline {\approx 3\,\,{\rm km}} \hspace{0.05cm}.$$


(2)  With the substitutions

$$x = { t}/{ T}, \hspace{0.2cm} K_1 = \frac{a_*/T}{\sqrt{2\pi^2 }}, \hspace{0.2cm} K_2 = \frac{a_*^2}{2\pi}$$

the impulse response can be described as follows:

$$h_{\rm K}(x) = K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x} \hspace{0.05cm}.$$

By setting the derivative to zero, it follows:

$$- {3}/{2} \cdot K_1 \cdot x^{-5/2}\cdot {\rm e}^{-K_2/x}+ K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x}\cdot (-K_2) \cdot (-x^{-2})= 0 \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm} {3}/{2} \cdot x^{-5/2} = K_2 \cdot x^{-7/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x_{\rm max} = {2}/{3} \cdot K_2 = { a_{\star}^2}/({3 \pi}) \hspace{0.05cm}.$$

This gives for $60 \ \rm dB$ cable attenuation $(a_* ≈ 6.9 \ \rm Np)$:

$$x_{\rm max} = { t_{\rm max}}/{ T} \hspace{-0.1cm}: \hspace{0.2cm} { t_{\rm max}}/{ T} = { 6.9^2}/({3\pi})\hspace{0.15cm}\underline {\approx 5} \hspace{0.2cm}.$$


(3)  Substituting the result of (2) into the given equation, we obtain (we use $a$ instead of $a_*$):

$$h_{\rm K}(t_{\rm max}) \ = \ \frac{1}{T} \cdot \frac{ a}{ \sqrt{2 \pi^2 \cdot \frac{a^6}{(3\pi)^3}}}\hspace{0.1cm} \cdot {\rm exp} \left[ - \frac{a^2}{2\pi} \cdot \frac{3\pi}{a^2}\hspace{0.1cm}\right]= \frac{1}{T} \cdot \frac{1}{a^2}\cdot \sqrt{\frac{27 \pi }{2}} \cdot {\rm e}^{-3/2}\hspace{0.15cm}\approx \frac{1}{T} \cdot \frac{1.453}{a^2} \hspace{0.05cm}.$$

Thus, with $a = 6.9$, we arrive at the final result:

$${\rm Max} \ [h_{\rm K}(t)] = \frac{1.453}{{6.9\,}^2} \cdot {1}/{T}\hspace{0.15cm}\underline {\approx 0.03 \cdot {1}/{T}} \hspace{0.05cm}.$$


(4)  Using the result of subtask (3), the determining equation is:

$$\frac{ a/T}{ \sqrt{2 \pi^2 \cdot (t_{5\%}/T)^3}}= 0.05 \cdot 0.03 \cdot {1}/{T}= 0.0015 \cdot {1}/{T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} (t_{5\%}/T)^{3/2} = \frac{a}{\sqrt{2} \cdot \pi \cdot 0.0015}\approx 1036 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}t_{5\%}/T \hspace{0.15cm}\underline {\approx 103.5}\hspace{0.05cm}.$$

This value is slightly too large because the second term ${\rm e}^{\rm – 0.05} ≈ 0.95$ was neglected. The exact calculation gives $t_{\rm 5\%}/T ≈ 97$.


(5)  The second solution is correct. In general:

$$g_r(t) = g_s(t) \star h_{\rm K}(t) = s_0 \cdot \int_{t-T/2}^{t+T/2} h_{\rm K}(\tau) \,{\rm d} \tau .$$

Since the channel impulse response $h_{\rm K}(t)$ changes only insignificantly within a symbol duration, it can also be written for this purpose:

$$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T .$$