Difference between revisions of "Aufgaben:Exercise 3.2: Expected Value Calculations"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID2751__Inf_A_3_2.png|right|frame|2D probability function]]
+
[[File:P_ID2751__Inf_A_3_2.png|right|frame|Two-dimensional <br>probability mass function]]
We consider the following probability functions:
+
We consider the following probability mass functions&nbsp; $\rm (PMF)$:
  
 
:$$P_X(X) = \big[1/2,\ 1/8,\ 0,\ 3/8 \big],$$
 
:$$P_X(X) = \big[1/2,\ 1/8,\ 0,\ 3/8 \big],$$
Line 15: Line 15:
 
: $X= \{0,\ 1,\ 2,\ 3\}$, &nbsp; &nbsp;  $Y= \{0,\ 1,\ 2,\ 3\}$,&nbsp; &nbsp; $U = \{0,\ 1\}$, &nbsp; &nbsp; $V = \{0, 1\}$.
 
: $X= \{0,\ 1,\ 2,\ 3\}$, &nbsp; &nbsp;  $Y= \{0,\ 1,\ 2,\ 3\}$,&nbsp; &nbsp; $U = \{0,\ 1\}$, &nbsp; &nbsp; $V = \{0, 1\}$.
  
Often, for such discrete random variables, one must have different expected values of the form
+
Often, for such discrete random variables, one must have to calculate different expected values of the form
 
:$${\rm E} \big [ F(X)\big ] =\hspace{-0.3cm}  \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}\hspace{-0.03cm}  {\rm supp} (P_X)}  \hspace{-0.1cm}  
 
:$${\rm E} \big [ F(X)\big ] =\hspace{-0.3cm}  \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}\hspace{-0.03cm}  {\rm supp} (P_X)}  \hspace{-0.1cm}  
  P_{X}(x) \cdot F(x) $$
+
  P_{X}(x) \cdot F(x). $$
  
calculate. Here, denote:
+
Here, denote:
  
* $P_X(X)$&nbsp; denotes the <i>probability function</i> of the discrete random variable &nbsp; $X$.
+
* $P_X(X)$&nbsp; denotes the probability mass function of the discrete random variable &nbsp; $X$.
* The&nbsp; <i>support</i>&nbsp; of&nbsp; $P_X$&nbsp; includes all those realisations&nbsp; $x$&nbsp; of the random variable&nbsp; $X$&nbsp; with non-vanishing probability.
+
* The&nbsp; "support"&nbsp; of&nbsp; $P_X$&nbsp; includes all those realisations&nbsp; $x$&nbsp; of the random variable&nbsp; $X$&nbsp; with non-vanishing probability.
*Formally, this can be written
+
*Formally, this can be written as
 
:$${\rm supp} (P_X)  = \{ x: \hspace{0.25cm}x \in X \hspace{0.15cm}\underline{\rm and} \hspace{0.15cm} P_X(x) \ne 0 \} \hspace{0.05cm}.$$
 
:$${\rm supp} (P_X)  = \{ x: \hspace{0.25cm}x \in X \hspace{0.15cm}\underline{\rm and} \hspace{0.15cm} P_X(x) \ne 0 \} \hspace{0.05cm}.$$
 
* $F(X)$&nbsp; is an (arbitrary) real-valued function that can be specified in the entire domain of definition of the random variable&nbsp; $X$&nbsp;.
 
* $F(X)$&nbsp; is an (arbitrary) real-valued function that can be specified in the entire domain of definition of the random variable&nbsp; $X$&nbsp;.
Line 30: Line 30:
 
In the task, the expected values for various functions&nbsp; $F(X)$&nbsp; are to be calculated, among others for
 
In the task, the expected values for various functions&nbsp; $F(X)$&nbsp; are to be calculated, among others for
  
: $F(X)= 1/P_X(X)$,
+
#&nbsp; $F(X)= 1/P_X(X)$,
: $F(X)= P_X(X)$,
+
#&nbsp; $F(X)= P_X(X)$,
: $F(X)= - \log_2 \ P_X(X)$.
+
#&nbsp; $F(X)= - \log_2 \ P_X(X)$.
  
  
Line 42: Line 42:
  
 
Hints:  
 
Hints:  
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Some preliminary remarks on 2D random variables]].
+
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Some preliminary remarks on two-dimensional  random variables]].
* The two 1D probability functions&nbsp; $P_X(X)$&nbsp; and&nbsp; $P_Y(Y)$&nbsp; result from the presented 2D&ndash;PMF&nbsp; $P_{XY}(X,\ Y)$, as will be shown in&nbsp; [[Aufgaben:3.2Z_2D–Wahrscheinlichkeitsfunktion|Exercise 3.2Z]]&nbsp;.
+
* The two one-dimensional  probability mass functions&nbsp; $P_X(X)$&nbsp; and&nbsp; $P_Y(Y)$&nbsp; result from the presented 2D&ndash;PMF&nbsp; $P_{XY}(X,\ Y)$,&nbsp; as will be shown in&nbsp; [[Aufgaben:3.2Z_2D–Wahrscheinlichkeitsfunktion|Exercise 3.2Z]].
* The binary probability functions&nbsp; $P_U(U)$&nbsp; and&nbsp; $P_V(V)$&nbsp; are obtained according to the modulo operations&nbsp; $U = X \hspace{0.1cm}\text{mod} \hspace{0.1cm}2$&nbsp; and&nbsp; $V = Y \hspace{0.1cm}\text{mod} \hspace{0.1cm} 2$.
+
* The binary probability mass functions&nbsp; $P_U(U)$&nbsp; and&nbsp; $P_V(V)$&nbsp; are obtained according to the modulo operations&nbsp; $U = X \hspace{0.1cm}\text{mod} \hspace{0.1cm}2$&nbsp; and&nbsp; $V = Y \hspace{0.1cm}\text{mod} \hspace{0.1cm} 2$.
 
   
 
   
  

Revision as of 10:23, 17 August 2021

Two-dimensional
probability mass function

We consider the following probability mass functions  $\rm (PMF)$:

$$P_X(X) = \big[1/2,\ 1/8,\ 0,\ 3/8 \big],$$
$$P_Y(Y) = \big[1/2,\ 1/4,\ 1/4,\ 0 \big],$$
$$P_U(U) = \big[1/2,\ 1/2 \big],$$
$$P_V(V) = \big[3/4,\ 1/4\big].$$

For the associated random variables, let:

$X= \{0,\ 1,\ 2,\ 3\}$,     $Y= \{0,\ 1,\ 2,\ 3\}$,    $U = \{0,\ 1\}$,     $V = \{0, 1\}$.

Often, for such discrete random variables, one must have to calculate different expected values of the form

$${\rm E} \big [ F(X)\big ] =\hspace{-0.3cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm}\hspace{-0.03cm} {\rm supp} (P_X)} \hspace{-0.1cm} P_{X}(x) \cdot F(x). $$

Here, denote:

  • $P_X(X)$  denotes the probability mass function of the discrete random variable   $X$.
  • The  "support"  of  $P_X$  includes all those realisations  $x$  of the random variable  $X$  with non-vanishing probability.
  • Formally, this can be written as
$${\rm supp} (P_X) = \{ x: \hspace{0.25cm}x \in X \hspace{0.15cm}\underline{\rm and} \hspace{0.15cm} P_X(x) \ne 0 \} \hspace{0.05cm}.$$
  • $F(X)$  is an (arbitrary) real-valued function that can be specified in the entire domain of definition of the random variable  $X$ .


In the task, the expected values for various functions  $F(X)$  are to be calculated, among others for

  1.   $F(X)= 1/P_X(X)$,
  2.   $F(X)= P_X(X)$,
  3.   $F(X)= - \log_2 \ P_X(X)$.





Hints:

  • The exercise belongs to the chapter  Some preliminary remarks on two-dimensional random variables.
  • The two one-dimensional probability mass functions  $P_X(X)$  and  $P_Y(Y)$  result from the presented 2D–PMF  $P_{XY}(X,\ Y)$,  as will be shown in  Exercise 3.2Z.
  • The binary probability mass functions  $P_U(U)$  and  $P_V(V)$  are obtained according to the modulo operations  $U = X \hspace{0.1cm}\text{mod} \hspace{0.1cm}2$  and  $V = Y \hspace{0.1cm}\text{mod} \hspace{0.1cm} 2$.


Questions

1

What are the results of the following expected values?

${\rm E}\big[1/P_X(X)\big] \ = \ $

${\rm E}\big[1/P_{\hspace{0.04cm}Y}(\hspace{0.02cm}Y\hspace{0.02cm})\big] \ = \ $

2

Give the following expected values:

${\rm E}\big[P_X(X)\big] \ = \ $

${\rm E}\big[P_Y(Y)\big] \ = \ $

3

Now calculate the following expected values:

${\rm E}\big[P_Y(X)\big] \ = \ $

${\rm E}\big[P_X(Y)\big] \ = \ $

4

Which of the following statements are true?

${\rm E}\big[- \log_2 \ P_U(U)\big]$  gives the entropy of the random variable  $U$.
${\rm E}\big[- \log_2 \ P_V(V)\big]$  gives the entropy of the random variable  $V$.
${\rm E}\big[- \log_2 \ P_V(U)\big]$  gives the entropy of the random variable  $V$.


Solution

(1)  In general, the following applies to the expected value of the function  $F(X)$  with respect to the random variable  $X$:

$${\rm E} \left [ F(X)\right ] = \hspace{-0.4cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm} {\rm supp} (P_X)} \hspace{-0.2cm} P_{X}(x) \cdot F(x) \hspace{0.05cm}.$$

In the present example,  $X = \{0,\ 1,\ 2,\ 3\}$  and  $P_X(X) = \big [1/2, \ 1/8, \ 0, \ 3/8\big ]$.

  • Because of  $P_X(X = 2) = 0$ , the quantity to be taken into account  (the "support")  in the above summation thus results in
$${\rm supp} (P_X) = \{ 0\hspace{0.05cm}, 1\hspace{0.05cm}, 3 \} \hspace{0.05cm}.$$
  • With  $F(X) = 1/P_X(X)$  one further obtains:
$${\rm E} \big [ 1/P_X(X)\big ] = \hspace{-0.4cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm} \{ 0\hspace{0.05cm}, 1\hspace{0.05cm},\hspace{0.05cm} 3 \}} \hspace{-0.4cm} P_{X}(x) \cdot {1}/{P_X(x)} = \hspace{-0.4cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm} \{ 0\hspace{0.05cm}, 1\hspace{0.05cm},\hspace{0.05cm} 3 \}} \hspace{-0.3cm} 1 \hspace{0.15cm}\underline{ = 3} \hspace{0.05cm}.$$
  • The second expected value gives the same result with  ${\rm supp} (P_Y) = \{ 0\hspace{0.05cm}, 1\hspace{0.05cm}, 2 \} $ :
$${\rm E} \left [ 1/P_Y(Y)\right ] \hspace{0.15cm}\underline{ = 3}.$$


(2)  In both cases, the index of the probability function is identical with the random variable  $(X$  or   $Y)$  and we obtain

$${\rm E} \big [ P_X(X)\big ] = \hspace{-0.3cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm} \{ 0\hspace{0.05cm}, 1\hspace{0.05cm},\hspace{0.05cm} 3 \}} \hspace{-0.3cm} P_{X}(x) \cdot {P_X(x)} = (1/2)^2 + (1/8)^2 + (3/8)^2 = 13/32 \hspace{0.15cm}\underline{ \approx 0.406} \hspace{0.05cm},$$
$${\rm E} \big [ P_Y(Y)\big ] = \hspace{-0.3cm} \sum_{y \hspace{0.05cm}\in \hspace{0.05cm} \{ 0\hspace{0.05cm}, 1\hspace{0.05cm},\hspace{0.05cm} 2 \}} \hspace{-0.3cm} P_Y(y) \cdot P_Y(y) = (1/2)^2 + (1/4)^2 + (1/4)^2 \hspace{0.15cm}\underline{ = 0.375} \hspace{0.05cm}.$$


(3)  The following equations apply here:

$${\rm E} \big [ P_Y(X)\big ] = \hspace{-0.3cm} \sum_{x \hspace{0.05cm}\in \hspace{0.05cm} \{ 0\hspace{0.05cm}, 1\hspace{0.05cm},\hspace{0.05cm} 3 \}} \hspace{-0.3cm} P_{X}(x) \cdot {P_Y(x)} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{8} \cdot \frac{1}{4} + \frac{3}{8} \cdot 0 = 9/32 \hspace{0.15cm}\underline{ \approx 0.281} \hspace{0.05cm},$$
  • The expected value formation here refers to  $P_X(·)$, i.e. to the random variable  $X$.
  • $P_Y(·)$ is the formal function without (direct) reference to the random variable  $Y$.
  • The same numerical value is obtained for the second expected value  (this does not have to be the case):
$${\rm E} \big [ P_X(Y)\big ] = \hspace{-0.3cm} \sum_{y \hspace{0.05cm}\in \hspace{0.05cm} \{ 0\hspace{0.05cm}, 1\hspace{0.05cm},\hspace{0.05cm} 2 \}} \hspace{-0.3cm} P_{Y}(y) \cdot {P_X(y)} = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{8} + \frac{1}{4} \cdot 0 = 9/32 \hspace{0.15cm}\underline{ \approx 0.281} \hspace{0.05cm}.$$


(4)  We first calculate the three expected values:

$${\rm E} \big [-{\rm log}_2 \hspace{0.1cm} P_U(U)\big ] = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{1} + \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{1} \hspace{0.15cm}\underline{ = 1\ {\rm bit}} \hspace{0.05cm},$$
$${\rm E} \big [-{\rm log}_2 \hspace{0.1cm} P_V(V)\big ] = \frac{3}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{4}{3} + \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{4}{1} \hspace{0.15cm}\underline{ = 0.811\ {\rm bit}} \hspace{0.05cm},$$
$${\rm E} \big [-{\rm log}_2 \hspace{0.1cm} P_V(U)\big ] = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{4}{3} + \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{4}{1} \hspace{0.15cm}\underline{ = 1.208\ {\rm bit}} \hspace{0.05cm}.$$

Accordingly, the first two statements are correct:

  • The entropy  $H(U) = 1$  bit  can be calculated according to the first equation.  It applies to the binary random variable  $U$  with equal probabilities.
  • The entropy  $H(V) = 0.811$  bit  is calculated according to the second equation.  Due to the probabilities  $3/4$  and  $1/4$ , the entropy (uncertainty) is smaller here than for the random variable  $U$.
  • The third expected value cannot indicate the entropy of a binary random variable, which is always limited to  $1$  (bit) , simply because of the result   $(1.208$  bit$)$ .