Difference between revisions of "Aufgaben:Exercise 3.1: Causality Considerations"

From LNTwww
Line 75: Line 75:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; <u>Proposed solution 2</u> is cocrrect:
*Die angegebene Übertragungsfunktion kann man nach dem Spannungsteilerprinzip berechnen. &nbsp; Es gilt:
+
*The given transfer function can be computed according to the voltage divider principle. &nbsp; The following holds:
 
:$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
 
:$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
*Es handelt sich um einen Hochpass.  
+
*This is a high-pass filter.  
*Für sehr niedrige Frequenzen stellt die Induktivität&nbsp; $L$&nbsp; einen Kurzschluss dar.
+
*For very low frequencies, the inductivity&nbsp; $L$&nbsp; constitutes a short circuit.
  
  
  
'''(2)'''&nbsp; Richtig ist <u>Ja</u>:
+
'''(2)'''&nbsp; <u>Yes</u> is cocrrect:
*Jedes reale Netzwerk ist kausal.&nbsp; Die Impulsantwort&nbsp; $h(t)$&nbsp; ist gleich dem Ausgangssignal&nbsp; $y(t)$, wenn zum Zeitpunkt&nbsp; $t= 0$&nbsp; am Eingang ein extrem kurzfristiger Impuls &ndash; ein so genannter Diracimpuls &ndash; angelegt wird.  
+
*Every real network is causal.&nbsp; The impulse response&nbsp; $h(t)$&nbsp; is equal to the output signal&nbsp; $y(t)$ if at time&nbsp; $t= 0$&nbsp; an extremely short impulse &ndash; a so-called Dirac impulse &ndash; is applied to the input.  
*Aus Kausalitätsgründen kann dann natürlich am Ausgang nicht schon für Zeiten&nbsp; $t< 0$&nbsp; ein Signal auftreten:
+
*Then, a signal of course cannot occur at the output already for times&nbsp; $t< 0$&nbsp; for causality reasons:
 
:$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm}
 
:$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm}
 
  t<0 \hspace{0.05cm}.$$
 
  t<0 \hspace{0.05cm}.$$
*Formal lässt sich dies folgendermaßen zeigen: &nbsp; Die Hochpass&ndash;Übertragungsfunktion&nbsp; $H_1(f)$&nbsp; kann wie folgt umgeformt werden:
+
*Formally, this can be shown as follows: &nbsp; The high-pass&ndash;transfer function&nbsp; $H_1(f)$&nbsp; can be rearranged as follows:
 
:$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}}
 
:$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}}
 
  = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}}
 
  = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Die zweite Übertragungsfunktion beschreibt die zu&nbsp; $H_1(f)$&nbsp; äquivalente Tiefpassfunktion, die im Zeitbereich zur Exponentialfunktion führt.  
+
*The second transfer function describes the low-pass function equivalent to&nbsp; $H_1(f)$,&nbsp; which results in the exponential function in the time domain.  
*Die "$1$" wird zu einer Diracfunktion.&nbsp; Mit&nbsp; $T = 2\pi \cdot f_{\rm G}$&nbsp; gilt somit für&nbsp; $t \ge 0$:
+
*The "$1$" becomes a Dirac function.&nbsp; Considering&nbsp; $T = 2\pi \cdot f_{\rm G}$&nbsp; the following thus holds for&nbsp; $t \ge 0$:
 
:$$h_1(t) = \delta(t) - {1}/{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
 
:$$h_1(t) = \delta(t) - {1}/{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
*Für&nbsp; $t< 0$&nbsp; gilt dagegen&nbsp; $h_1(t)= 0$, womit die Kausalität nachgewiesen wäre.
+
*In contrast, &nbsp; $h_1(t)= 0$ holds for&nbsp; $t< 0$&nbsp;, which would prove causality.
  
  

Revision as of 07:59, 24 September 2021

Two two-port networks

The graph shows above the two-port network with the transfer function

$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm},$$

where  $f_{\rm G}$  represents the 3dB cut-off frequency:

$$f_{\rm G} = \frac{R}{2 \pi \cdot L} \hspace{0.05cm}.$$

By cascading  $n$  two-port networks  $H_1(f)$  built the same way, the transfer function

$$H_n(f) = \big [H_1(f)\big ]^n =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^n}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^n} \hspace{0.05cm}$$ is obtained.
  • Here, a suitable resistor decoupling is presumed, but this is not important for solving this exercise.
  • The lower graph shows for example the realization of the transfer function  $H_2(f)$.


In this exercise, such a two-port network is considered with respect to its causality properties.

For any causal system, the real and imaginary parts of the spectral function  $H(f)$  satisfy the  Hilbert transformation, which is expressed by the following abbreviation:

$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$

Since the Hilbert transformation provides important information not only for transfer functions but also for time signals, the correspondence is often expressed by the general variable  $x$ , which is to be interpreted - depending on the application - as normalized frequency or normalized time.





Please note:


Questions

1

How can  $H_1(f)$  be characterized?

$H_1(f)$  describes a low-pass filter.
$H_1(f)$  describes a high-pass filter.

2

Does  $H_1(f)$  describe a causal network?

Yes.
No.

3

Compute the transfer function  $H_2(f)$.  What is the complex value for  $f = f_{\rm G}$?

${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $

${\rm Im}\big[H_2(f = f_{\rm G})\big] \ = \ $

4

Which of the following statements are true?

$H_2(f)$  describes a causal system.
The expressions  $(x^4 - x^2)/(x^4 +2 x^2 + 1)$  and  $2x^3/(x^4 +2 x^2 + 1)$  are a Hilbert pair.
The causality condition is not satisfied for  $n > 2$ .


Solution

(1)  Proposed solution 2 is cocrrect:

  • The given transfer function can be computed according to the voltage divider principle.   The following holds:
$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
  • This is a high-pass filter.
  • For very low frequencies, the inductivity  $L$  constitutes a short circuit.


(2)  Yes is cocrrect:

  • Every real network is causal.  The impulse response  $h(t)$  is equal to the output signal  $y(t)$ if at time  $t= 0$  an extremely short impulse – a so-called Dirac impulse – is applied to the input.
  • Then, a signal of course cannot occur at the output already for times  $t< 0$  for causality reasons:
$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
  • Formally, this can be shown as follows:   The high-pass–transfer function  $H_1(f)$  can be rearranged as follows:
$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm}.$$
  • The second transfer function describes the low-pass function equivalent to  $H_1(f)$,  which results in the exponential function in the time domain.
  • The "$1$" becomes a Dirac function.  Considering  $T = 2\pi \cdot f_{\rm G}$  the following thus holds for  $t \ge 0$:
$$h_1(t) = \delta(t) - {1}/{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
  • In contrast,   $h_1(t)= 0$ holds for  $t< 0$ , which would prove causality.


(3)  Die Hintereinanderschaltung zweier Hochpässe führt zu folgender Übertragungsfunktion:

$$H_2(f) = \big [H_1(f)\big ]^2 =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^2} =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2 \cdot \big [(1-{\rm j}\cdot f/f_{\rm G})\big ]^2} {\big [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\big ]^2}= \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2 \cdot (f/f_{\rm G})^3)} {\big [1+(f/f_{\rm G})^2 \big ]^2}\hspace{0.05cm}.$$
  • Mit  $f = f_{\rm G}$  folgt daraus:
$$H_2(f = f_{\rm G}) = \frac{1 - 1 +{\rm j}\cdot 2} {4}= {\rm j} /{2} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0}, \hspace{0.4cm} {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$


(4)  Richtig sind die beiden ersten Lösungsvorschläge:

  • Da für  $t < 0$  die Impulsantwort  $h_1(t) = 0$  ist, erfüllt auch die Faltungsoperation  $h_2(t) = h_1(t) \star h_1(t)$  die Kausalitätsbedingung.  Ebenso ergibt die  $n$–fache Faltung eine kausale Impulsantwort:   $h_n(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$
  • Bei kausaler Impulsantwort  $h_2(t)$  hängen aber der Real– und der Imaginärteil der Spektralfunktion  $H_2(f)$  über die Hilbert–Transformation zusammen.  Mit der Abkürzung  $x = f/f_{\rm G}$  und dem Ergebnis der Teilaufgabe  (3)  gilt somit:
$$\frac{x^4- x^2}{x^4+2 x^2+1} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{2x^3}{x^4+2 x^2+1}\hspace{0.05cm}.$$