Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.6Z: Two Imaginary Poles"

From LNTwww
Line 105: Line 105:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
''Please note:''     The causal cosine signal  x(t)  and the causal sine signal  y(t)  are shown on the information page of  [[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6]]  als  cK(t)  and  sK(t),  respectively.
+
''Please note:''     The causal cosine signal  x(t)  and the causal sine signal  y(t)  are shown on the information page of  [[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6]]  as  cK(t)  and  sK(t),  respectively.
  
  

Revision as of 10:15, 25 October 2021

Two imaginary poles and one zero

In this exercise, we consider a causal signal  x(t)  with the Laplace transform

XL(p)=pp2+4π2=p(pj2π)(p+j2π)

corresponding to the graph  (one red zero and two green poles).

In contrast, the signal  y(t)  has the Laplace spectral function

YL(p)=1p2+4π2.

Thus, the red zero does not belong to  YL(p).

Finally, the signal  z(t)  with the Laplace tansform

ZL(p)=p(pjβ)(p+jβ)

is considered, in particular the limiting case for  β0.





Please note:

  • The exercise belongs to the chapter  Inverse Laplace Transform.
  • The frequency variable  p  is normalized such that time  t  is in microseconds after applying the residue theorem.
  • A result  t=1  is thus to be interpreted as  t=T  with  T = 1 \ \rm µ s .
  • The  residue theorem  is as follows using the example of the function  X_{\rm L}(p)  with two simple poles at   \pm {\rm j} \cdot \beta:
x(t) = X_{\rm L}(p) \cdot (p - {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p\hspace{0.05cm} \cdot \hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}}+X_{\rm L}(p) \cdot (p + {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm} \cdot\hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{-\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}} \hspace{0.05cm}.


Questions

1

Compute the signal  x(t). Which of the following statements are correct?

x(t)  is a causal cosine signal.
x(t)  is a causal sinusoidal signal.
The amplitude of  x(t)  is  1.
The period of x(t) is  T = 1 \ \rm µ s.

2

Compute the signal  y(t). Which of the following statements are correct?

y(t)  is a causal cosine signal.
y(t)  is a causal sinusoidal signal.
The amplitude of  y(t)  is  1.
The period of  y(t)  is  T = 1 \ \rm µ s.

3

Which statements are true for the signal  z(t) ?

For   \beta > 0,   z(t)  is cosine-shaped.
For   \beta > 0,   z(t)  is sinusoidal.
The limiting case  \beta → 0  results in the step function  \gamma(t).


Solution

(1)  The suggested solutions 1, 3 and 4 are correct:

  • The following is obtained for signal  x(t)  for positive times by applying the residue theorem:
x_1(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t}\}= \frac {p} { p+{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\hspace{0.05cm} ,
x_2(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\}= \frac {p} { p-{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= -{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t} \hspace{0.05cm} .
\Rightarrow \hspace{0.3cm} x(t) = x_1(t) + x_2(t) = {1}/{2} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}+{\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\right ] = \cos(2\pi t) \hspace{0.05cm} .


(2)  The suggested solutions 2 and 4 are correct:

  • In principle, this subtask could be solved in the same way as subtask  (1).
  • However, the integration theorem can also be used.
  • This says among other things that multiplication by  1/p  in the spectral domain corresponds to integration in the time domain:
Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi \tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t) \hspace{0.05cm} .

Please note:     The causal cosine signal  x(t)  and the causal sine signal  y(t)  are shown on the information page of  Exercise 3.6  as  c_{\rm K}(t)  and  s_{\rm K}(t),  respectively.


(3)  The suggested solutions 1 and 3 are correct:

  • A comparison with the computation of  x(t)  shows that  z(t) = \cos (\beta \cdot t)  holds for  t \ge 0  and  z(t) = 0  for  t < 0 .
  • The limit process for  \beta → 0  thus results in the step function  \gamma(t).
  • The same result is obtained by consideration in the spectral domain:
Z_{\rm L}(p) = \lim_{\beta \hspace{0.05cm} \rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}\frac{p}{p^2 + \beta^2} = {1}/{p} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z(t) = \gamma(t) \hspace{0.05cm} .