Difference between revisions of "Aufgaben:Exercise 3.6Z: Two Imaginary Poles"
From LNTwww
Line 105: | Line 105: | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | ''Please note:'' The causal cosine signal x(t) and the causal sine signal y(t) are shown on the information page of [[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6]] | + | ''Please note:'' The causal cosine signal x(t) and the causal sine signal y(t) are shown on the information page of [[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6]] as cK(t) and sK(t), respectively. |
Revision as of 10:15, 25 October 2021
In this exercise, we consider a causal signal x(t) with the Laplace transform
- XL(p)=pp2+4π2=p(p−j⋅2π)(p+j⋅2π)
corresponding to the graph (one red zero and two green poles).
In contrast, the signal y(t) has the Laplace spectral function
- YL(p)=1p2+4π2.
Thus, the red zero does not belong to YL(p).
Finally, the signal z(t) with the Laplace tansform
- ZL(p)=p(p−j⋅β)(p+j⋅β)
is considered, in particular the limiting case for β→0.
Please note:
- The exercise belongs to the chapter Inverse Laplace Transform.
- The frequency variable p is normalized such that time t is in microseconds after applying the residue theorem.
- A result t=1 is thus to be interpreted as t=T with T = 1 \ \rm µ s .
- The residue theorem is as follows using the example of the function X_{\rm L}(p) with two simple poles at \pm {\rm j} \cdot \beta:
- x(t) = X_{\rm L}(p) \cdot (p - {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p\hspace{0.05cm} \cdot \hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}}+X_{\rm L}(p) \cdot (p + {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm} \cdot\hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{-\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}} \hspace{0.05cm}.
Questions
Solution
(1) The suggested solutions 1, 3 and 4 are correct:
- The following is obtained for signal x(t) for positive times by applying the residue theorem:
- x_1(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t}\}= \frac {p} { p+{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\hspace{0.05cm} ,
- x_2(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\}= \frac {p} { p-{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= -{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t} \hspace{0.05cm} .
- \Rightarrow \hspace{0.3cm} x(t) = x_1(t) + x_2(t) = {1}/{2} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}+{\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\right ] = \cos(2\pi t) \hspace{0.05cm} .
(2) The suggested solutions 2 and 4 are correct:
- In principle, this subtask could be solved in the same way as subtask (1).
- However, the integration theorem can also be used.
- This says among other things that multiplication by 1/p in the spectral domain corresponds to integration in the time domain:
- Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi \tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t) \hspace{0.05cm} .
Please note: The causal cosine signal x(t) and the causal sine signal y(t) are shown on the information page of Exercise 3.6 as c_{\rm K}(t) and s_{\rm K}(t), respectively.
(3) The suggested solutions 1 and 3 are correct:
- A comparison with the computation of x(t) shows that z(t) = \cos (\beta \cdot t) holds for t \ge 0 and z(t) = 0 for t < 0 .
- The limit process for \beta → 0 thus results in the step function \gamma(t).
- The same result is obtained by consideration in the spectral domain:
- Z_{\rm L}(p) = \lim_{\beta \hspace{0.05cm} \rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}\frac{p}{p^2 + \beta^2} = {1}/{p} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z(t) = \gamma(t) \hspace{0.05cm} .