Difference between revisions of "Aufgaben:Exercise 3.7Z: Partial Fraction Decomposition"

From LNTwww
Line 21: Line 21:
 
Two of the four configurations given are so-called ''all-pass filters''.  
 
Two of the four configurations given are so-called ''all-pass filters''.  
 
*This refers to two-port networks for which the Fourier spectral function satisfies the condition  $|H(f)| = 1$   ⇒   $a(f) = 0$ .  
 
*This refers to two-port networks for which the Fourier spectral function satisfies the condition  $|H(f)| = 1$   ⇒   $a(f) = 0$ .  
*In [[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|Exercise 3.4Z]] ist angegeben, wie die Pole und Nullstelle eines solchen Allpasses liegen müssen.
+
*In [[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|Exercise 3.4Z]] it is given how the poles and zeros of such an all-pass filter must be positioned.
  
  
Weiterhin soll in dieser Aufgabe die  $p$–Übertragungsfunktion
+
Furthermore, in this exercise the  $p$–transfer function
 
:$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2}
 
:$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2}
 
  \hspace{0.05cm}$$
 
  \hspace{0.05cm}$$
⇒   "Konfiguration $(5)$" näher untersucht werden, die bei richtiger Wahl des Parameters  $A$  durch eines der vier in der Grafik vorgegebenen Pol–Nullstellen–Diagramme dargestellt werden kann.
+
⇒   "configuration $(5)$" will be examined in more detail, which can be represented by one of the four pole–zero diagrams given in the graph if the parameter  $A$  is chosen correctly.
  
  
Line 33: Line 33:
  
  
''Hinweise:''  
+
''Please note:''  
 
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
 
*In particular, reference is made to the page  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Partial_fraction_decomposition|Partial fraction decomposition]].
 
*In particular, reference is made to the page  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Partial_fraction_decomposition|Partial fraction decomposition]].
Line 43: Line 43:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Bei welchen der skizzierten Vierpole handelt es sich um Allpässe?
+
{Which of the sketched two-port networks are all-pass filters?
 
|type="[]"}
 
|type="[]"}
+ Konfiguration &nbsp;$(1)$,
+
+ Configuration &nbsp;$(1)$,
+ Konfiguration &nbsp;$(2)$,
+
+ configuration &nbsp;$(2)$,
- Konfiguration &nbsp;$(3)$,
+
- configuration &nbsp;$(3)$,
- Konfiguration &nbsp;$(4)$.
+
- configuration &nbsp;$(4)$.
  
  
{Welcher Vierpol hat die Übertragungsfunktion &nbsp;$H_{\rm L}^{(5)}(p)$?
+
{Which quadripole has the transfer function &nbsp;$H_{\rm L}^{(5)}(p)$?
 
|type="()"}
 
|type="()"}
- Konfiguration &nbsp;$(1)$,
+
- Configuration &nbsp;$(1)$,
- Konfiguration &nbsp;$(2)$,
+
- configuration &nbsp;$(2)$,
- Konfiguration &nbsp;$(3)$,
+
- configuration &nbsp;$(3)$,
+ Konfiguration &nbsp;$(4)$.
+
+ configuration &nbsp;$(4)$.
  
  
{Berechnen Sie die Funktion &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; nach einer Partialbruchzerlegung für die Konfiguration&nbsp; '''(1)'''. <br>Geben Sie den Funktionswert für &nbsp;$p = 0$&nbsp; ein.
+
{Compute the function &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; after a partial fraction decomposition for configuration&nbsp; '''(1)'''. <br>Enter the function value for &nbsp;$p = 0$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$H_{\rm L}\hspace{0.01cm}'(p = 0) \ = \ $  { 2 3% }
 
$H_{\rm L}\hspace{0.01cm}'(p = 0) \ = \ $  { 2 3% }
  
  
{Berechnen Sie  &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; für die Konfiguration &nbsp;$(2)$.&nbsp; Welche Aussagen treffen hier zu?
+
{Compute &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; for the configuration &nbsp;$(2)$.&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; besitzt die gleichen Nullstellen wie &nbsp;$H_{\rm L}(p)$.
+
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same zeros as &nbsp;$H_{\rm L}(p)$.
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; besitzt die gleichen Polstellen wie &nbsp;$H_{\rm L}(p)$.
+
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same poles as &nbsp;$H_{\rm L}(p)$.
+ Der konstante Faktor von &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; ist &nbsp;$K' = 8$.
+
+ The constant factor of &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; is &nbsp;$K' = 8$.
  
  
{Berechnen Sie &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; für die Konfiguration &nbsp;$(3)$.&nbsp; Welche Aussagen treffen hier zu?
+
{Compute &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; for the configuration &nbsp;$(3)$.&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; besitzt die gleichen Nullstellen wie &nbsp;$H_{\rm L}(p)$.
+
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same zeros as &nbsp;$H_{\rm L}(p)$.
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; besitzt die gleichen Polstellen wie &nbsp;$H_{\rm L}(p)$.
+
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same poles as &nbsp;$H_{\rm L}(p)$.
- Der konstante Faktor von &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; ist &nbsp;$K' = 8$.
+
- The constant factor of &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; is &nbsp;$K' = 8$.
  
  
{Berechnen Sie &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; für die Konfiguration &nbsp;$(4)$.&nbsp; Welche Aussagen treffen hier zu?
+
{Compute &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; for the configuration &nbsp;$(4)$.&nbsp; Which statements are true here?
 
|type="[]"}
 
|type="[]"}
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; besitzt die gleichen Nullstellen wie &nbsp;$H_{\rm L}(p)$.
+
- $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same zeros as &nbsp;$H_{\rm L}(p)$.
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; besitzt die gleichen Polstellen wie &nbsp;$H_{\rm L}(p)$.
+
+ $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; has the same poles as &nbsp;$H_{\rm L}(p)$.
- Der konstante Faktor von &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; ist &nbsp;$K' = 8$.
+
- The constant factor of &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; is &nbsp;$K' = 8$.
  
  
Line 90: Line 90:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u> Lösungsvorschläge 1 und 2</u>:
+
'''(1)'''&nbsp; The <u> suggested solutions 1 and 2</u> are correct:
*Nach den in der Aufgabe 3.4Z angegebenen Kriterien liegt immer dann ein Allpass vor, wenn es zu jeder Polstelle &nbsp;$p_{\rm x} = - A + {\rm j} \cdot B$&nbsp; in der linken $p$&ndash;Halbebene eine entsprechende Nullstelle &nbsp;$p_{\rm o} = + A + {\rm j} \cdot B$&nbsp; in der rechten Halbebene gibt.  
+
*According to the criteria given in exercise 3.4Z, there is always an all-pass filter at hand if there is a zero &nbsp;$p_{\rm o} = + A + {\rm j} \cdot B$&nbsp; in the right half-plane for each pole &nbsp;$p_{\rm x} = - A + {\rm j} \cdot B$&nbsp; in the left $p$&ndash;half-plane.  
 
*Mit&nbsp; $K = 1$&nbsp; ist dann die Dämpfungsfunktion &nbsp;$a(f) = 0 \ \rm  Np$ &nbsp; &#8658; &nbsp; $|H(f)| = 1$.  
 
*Mit&nbsp; $K = 1$&nbsp; ist dann die Dämpfungsfunktion &nbsp;$a(f) = 0 \ \rm  Np$ &nbsp; &#8658; &nbsp; $|H(f)| = 1$.  
 
*Aus der Grafik auf der Angabenseite erkennt man: &nbsp; Die Konfigurationen &nbsp;$(1)$ und &nbsp;$(2)$ erfüllen genau diese Symmetrieeigenschaften.
 
*Aus der Grafik auf der Angabenseite erkennt man: &nbsp; Die Konfigurationen &nbsp;$(1)$ und &nbsp;$(2)$ erfüllen genau diese Symmetrieeigenschaften.
Line 97: Line 97:
  
  
'''(2)'''&nbsp; Richtig ist der <u> Lösungsvorschlag 4</u>:
+
'''(2)'''&nbsp; The <u> suggested solution 4</u> is correct:
*Die Übertragungsfunktion &nbsp;$H_{\rm L}^{(5)}(p)$&nbsp; wird ebenso durch die Konfiguration &nbsp;$(4)$&nbsp; beschrieben, wie die nachfolgende Rechnung zeigt:
+
*The transfer function &nbsp;$H_{\rm L}^{(5)}(p)$&nbsp; is also described by configuration &nbsp;$(4)$&nbsp; as the following calculation shows:
 
:$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} =  \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2}
 
:$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} =  \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2}
 
  =\frac{p/A}{{p/A}+2+ {A/p}}
 
  =\frac{p/A}{{p/A}+2+ {A/p}}

Revision as of 08:22, 26 October 2021

Pole-zero diagrams

In the graph, four two-port networks are given by their pole–zero diagrams  $H_{\rm L}(p)$ .

  • They all have in common that the number  $Z$  of zeros is equal to the number  $N$  of poles.
  • The constant factor in each case is  $K=1$.


In the special case  $Z = N$  the residue theorem cannot be applied directly to compute the impulse response  $h(t)$ .

Rather, a partial fraction decomposition corresponding to

$$H_{\rm L}(p) =1- H_{\rm L}\hspace{0.05cm}'(p) \hspace{0.05cm}$$

must be made beforehand. Then,

$$h(t) = \delta(t)- h\hspace{0.03cm}'(t) \hspace{0.05cm}$$ holds for the impulse response.

 $h\hspace{0.03cm}'(t)$  is the inverse Laplace transform of  $H_{\rm L}\hspace{0.05cm}'(p)$ , where the condition  $Z' < N'$  is satisfied.

Two of the four configurations given are so-called all-pass filters.

  • This refers to two-port networks for which the Fourier spectral function satisfies the condition  $|H(f)| = 1$   ⇒   $a(f) = 0$ .
  • In Exercise 3.4Z it is given how the poles and zeros of such an all-pass filter must be positioned.


Furthermore, in this exercise the  $p$–transfer function

$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2} \hspace{0.05cm}$$

⇒   "configuration $(5)$" will be examined in more detail, which can be represented by one of the four pole–zero diagrams given in the graph if the parameter  $A$  is chosen correctly.



Please note:



Questions

1

Which of the sketched two-port networks are all-pass filters?

Configuration  $(1)$,
configuration  $(2)$,
configuration  $(3)$,
configuration  $(4)$.

2

Which quadripole has the transfer function  $H_{\rm L}^{(5)}(p)$?

Configuration  $(1)$,
configuration  $(2)$,
configuration  $(3)$,
configuration  $(4)$.

3

Compute the function  $H_{\rm L}\hspace{0.01cm}'(p)$  after a partial fraction decomposition for configuration  (1).
Enter the function value for  $p = 0$ .

$H_{\rm L}\hspace{0.01cm}'(p = 0) \ = \ $

4

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for the configuration  $(2)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.

5

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for the configuration  $(3)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.

6

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for the configuration  $(4)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.


Solution

(1)  The suggested solutions 1 and 2 are correct:

  • According to the criteria given in exercise 3.4Z, there is always an all-pass filter at hand if there is a zero  $p_{\rm o} = + A + {\rm j} \cdot B$  in the right half-plane for each pole  $p_{\rm x} = - A + {\rm j} \cdot B$  in the left $p$–half-plane.
  • Mit  $K = 1$  ist dann die Dämpfungsfunktion  $a(f) = 0 \ \rm Np$   ⇒   $|H(f)| = 1$.
  • Aus der Grafik auf der Angabenseite erkennt man:   Die Konfigurationen  $(1)$ und  $(2)$ erfüllen genau diese Symmetrieeigenschaften.


(2)  The suggested solution 4 is correct:

  • The transfer function  $H_{\rm L}^{(5)}(p)$  is also described by configuration  $(4)$  as the following calculation shows:
$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} = \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2} =\frac{p/A}{{p/A}+2+ {A/p}} = \hspace{0.2cm}\frac{p^2}{p^2 + 2A \cdot p + A^2} = \frac{p^2}{(p+A)^2 }= H_{\rm L}^{(4)}(p) \hspace{0.05cm}.$$
  • Die doppelte Nullstelle liegt bei  $p_{\rm o} = 0$, der doppelte Pol bei  $p_{\rm x} = -A = -2$.


(3)  Für die Konfiguration  $(1)$  gilt:

$$H_{\rm L}(p) =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{4}{p+2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{H_{\rm L}\hspace{-0.05cm}'(p =0) =2} \hspace{0.05cm}.$$


(4)  In gleicher Weise ergibt sich für die Konfiguration  $(2)$:

$$H_{\rm L}(p) =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}= \frac{p^2 -4\cdot p +8 }{p^2 +4\cdot p +8}= \hspace{0.2cm}\frac{p^2 +4\cdot p +8 -8\cdot p}{p^2 +4\cdot p +8} =1- \frac{8\cdot p}{p^2 +4\cdot p +8}=1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 8 \cdot \frac{p}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$

Richtig sind also die Lösungsvorschläge 2 und 3 im Gegensatz zur Aussage 1:

  • Während  $H_{\rm L}(p)$  zwei konjugiert–komplexe Nullstellen aufweist,
  • besitzt  $H_{\rm L}\hspace{0.01cm}'(p)$  nur eine einzige Nullstelle bei  $p_{\rm o}\hspace{0.01cm}' = 0$.



(5)  Für die Konfiguration  $(3)$  gilt:

$$H_{\rm L}(p) = \frac{p^2 }{p^2 +4\cdot p +8}=\frac{p^2 +4\cdot p +8 -4\cdot p -8 }{p^2 +4\cdot p +8} = 1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = 4 \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$
  • Die Nullstelle von  $H_{\rm L}\hspace{0.01cm}'(p)$  liegt nun bei  $p_{\rm o}\hspace{0.01cm}' = -2$.
  • Die Konstante ist  $K\hspace{0.01cm}' = 4$   ⇒   richtig ist hier nur der Lösungsvorschlag 2.


(6)  Schließlich gilt für die Konfiguration  $(4)$:

$$H_{\rm L}(p) = \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p +4 -4\cdot p -4 }{p^2 +4\cdot p +4} = 1- \frac{4\cdot p +4 }{p^2 +4\cdot p +4} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 4 \cdot \frac{p+1}{(p+2)^2} \hspace{0.05cm}.$$

Richtig ist auch hier der Lösungsvorschlag 2. Allgemein lässt sich sagen:

  • Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.
  • Die Pole von $H_{\rm L}\hspace{0.01cm}'(p)$ sind dagegen stets identisch mit denen von $H_{\rm L}(p)$.