Difference between revisions of "Aufgaben:Exercise 3.7Z: Partial Fraction Decomposition"
Line 21: | Line 21: | ||
Two of the four configurations given are so-called ''all-pass filters''. | Two of the four configurations given are so-called ''all-pass filters''. | ||
*This refers to two-port networks for which the Fourier spectral function satisfies the condition |H(f)|=1 ⇒ a(f)=0 . | *This refers to two-port networks for which the Fourier spectral function satisfies the condition |H(f)|=1 ⇒ a(f)=0 . | ||
− | *In [[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|Exercise 3.4Z]] | + | *In [[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|Exercise 3.4Z]] it is given how the poles and zeros of such an all-pass filter must be positioned. |
− | + | Furthermore, in this exercise the p–transfer function | |
:$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2} | :$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2} | ||
\hspace{0.05cm}$$ | \hspace{0.05cm}$$ | ||
− | ⇒ " | + | ⇒ "configuration (5)" will be examined in more detail, which can be represented by one of the four pole–zero diagrams given in the graph if the parameter A is chosen correctly. |
Line 33: | Line 33: | ||
− | '' | + | ''Please note:'' |
*The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]]. | *The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]]. | ||
*In particular, reference is made to the page [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Partial_fraction_decomposition|Partial fraction decomposition]]. | *In particular, reference is made to the page [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Partial_fraction_decomposition|Partial fraction decomposition]]. | ||
Line 43: | Line 43: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the sketched two-port networks are all-pass filters? |
|type="[]"} | |type="[]"} | ||
− | + | + | + Configuration (1), |
− | + | + | + configuration (2), |
− | - | + | - configuration (3), |
− | - | + | - configuration (4). |
− | { | + | {Which quadripole has the transfer function H(5)L(p)? |
|type="()"} | |type="()"} | ||
− | - | + | - Configuration (1), |
− | - | + | - configuration (2), |
− | - | + | - configuration (3), |
− | + | + | + configuration (4). |
− | { | + | {Compute the function HL′(p) after a partial fraction decomposition for configuration '''(1)'''. <br>Enter the function value for p=0 . |
|type="{}"} | |type="{}"} | ||
HL′(p=0) = { 2 3% } | HL′(p=0) = { 2 3% } | ||
− | { | + | {Compute HL′(p) for the configuration (2). Which statements are true here? |
|type="[]"} | |type="[]"} | ||
− | - HL′(p) | + | - HL′(p) has the same zeros as HL(p). |
− | + HL′(p) | + | + HL′(p) has the same poles as HL(p). |
− | + | + | + The constant factor of HL′(p) is K′=8. |
− | { | + | {Compute HL′(p) for the configuration (3). Which statements are true here? |
|type="[]"} | |type="[]"} | ||
− | - HL′(p) | + | - HL′(p) has the same zeros as HL(p). |
− | + HL′(p) | + | + HL′(p) has the same poles as HL(p). |
− | - | + | - The constant factor of HL′(p) is K′=8. |
− | { | + | {Compute HL′(p) for the configuration (4). Which statements are true here? |
|type="[]"} | |type="[]"} | ||
− | - HL′(p) | + | - HL′(p) has the same zeros as HL(p). |
− | + HL′(p) | + | + HL′(p) has the same poles as HL(p). |
− | - | + | - The constant factor of HL′(p) is K′=8. |
Line 90: | Line 90: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The <u> suggested solutions 1 and 2</u> are correct: |
− | * | + | *According to the criteria given in exercise 3.4Z, there is always an all-pass filter at hand if there is a zero $p_{\rm o} = + A + {\rm j} \cdot B$ in the right half-plane for each pole $p_{\rm x} = - A + {\rm j} \cdot B$ in the left p–half-plane. |
*Mit K=1 ist dann die Dämpfungsfunktion a(f)=0 Np ⇒ |H(f)|=1. | *Mit K=1 ist dann die Dämpfungsfunktion a(f)=0 Np ⇒ |H(f)|=1. | ||
*Aus der Grafik auf der Angabenseite erkennt man: Die Konfigurationen (1) und (2) erfüllen genau diese Symmetrieeigenschaften. | *Aus der Grafik auf der Angabenseite erkennt man: Die Konfigurationen (1) und (2) erfüllen genau diese Symmetrieeigenschaften. | ||
Line 97: | Line 97: | ||
− | '''(2)''' | + | '''(2)''' The <u> suggested solution 4</u> is correct: |
− | * | + | *The transfer function H(5)L(p) is also described by configuration (4) as the following calculation shows: |
:$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} = \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2} | :$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} = \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2} | ||
=\frac{p/A}{{p/A}+2+ {A/p}} | =\frac{p/A}{{p/A}+2+ {A/p}} |
Revision as of 09:22, 26 October 2021
In the graph, four two-port networks are given by their pole–zero diagrams HL(p) .
- They all have in common that the number Z of zeros is equal to the number N of poles.
- The constant factor in each case is K=1.
In the special case Z=N the residue theorem cannot be applied directly to compute the impulse response h(t) .
Rather, a partial fraction decomposition corresponding to
- HL(p)=1−HL′(p)
must be made beforehand. Then,
- h(t)=δ(t)−h′(t) holds for the impulse response.
h′(t) is the inverse Laplace transform of HL′(p) , where the condition Z′<N′ is satisfied.
Two of the four configurations given are so-called all-pass filters.
- This refers to two-port networks for which the Fourier spectral function satisfies the condition |H(f)|=1 ⇒ a(f)=0 .
- In Exercise 3.4Z it is given how the poles and zeros of such an all-pass filter must be positioned.
Furthermore, in this exercise the p–transfer function
- H(5)L(p)=p/A(√p/A+√A/p)2
⇒ "configuration (5)" will be examined in more detail, which can be represented by one of the four pole–zero diagrams given in the graph if the parameter A is chosen correctly.
Please note:
- The exercise belongs to the chapter Inverse Laplace Transform.
- In particular, reference is made to the page Partial fraction decomposition.
Questions
Solution
- According to the criteria given in exercise 3.4Z, there is always an all-pass filter at hand if there is a zero po=+A+j⋅B in the right half-plane for each pole px=−A+j⋅B in the left p–half-plane.
- Mit K=1 ist dann die Dämpfungsfunktion a(f)=0 Np ⇒ |H(f)|=1.
- Aus der Grafik auf der Angabenseite erkennt man: Die Konfigurationen (1) und (2) erfüllen genau diese Symmetrieeigenschaften.
(2) The suggested solution 4 is correct:
- The transfer function H(5)L(p) is also described by configuration (4) as the following calculation shows:
- H(5)L(p)=p/A(√p/A+√A/p)2=p/Ap/A+2+A/p=p2p2+2A⋅p+A2=p2(p+A)2=H(4)L(p).
- Die doppelte Nullstelle liegt bei po=0, der doppelte Pol bei px=−A=−2.
(3) Für die Konfiguration (1) gilt:
- HL(p)=p−2p+2=p+2−4p+2=1−4p+2=1−HL′(p)⇒HL′(p)=4p+2⇒HL′(p=0)=2_.
(4) In gleicher Weise ergibt sich für die Konfiguration (2):
- HL(p)=(p−2−j⋅2)(p−2+j⋅2)(p+2−j⋅2)(p+2+j⋅2)=p2−4⋅p+8p2+4⋅p+8=p2+4⋅p+8−8⋅pp2+4⋅p+8=1−8⋅pp2+4⋅p+8=1−HL′(p)
- ⇒HL′(p)=8⋅p(p+2−j⋅2)(p+2+j⋅2).
Richtig sind also die Lösungsvorschläge 2 und 3 im Gegensatz zur Aussage 1:
- Während HL(p) zwei konjugiert–komplexe Nullstellen aufweist,
- besitzt HL′(p) nur eine einzige Nullstelle bei po′=0.
(5) Für die Konfiguration (3) gilt:
- HL(p)=p2p2+4⋅p+8=p2+4⋅p+8−4⋅p−8p2+4⋅p+8=1−HL′(p)
- ⇒HL′(p)=4⋅p+2(p+2−j⋅2)(p+2+j⋅2).
- Die Nullstelle von HL′(p) liegt nun bei po′=−2.
- Die Konstante ist K′=4 ⇒ richtig ist hier nur der Lösungsvorschlag 2.
(6) Schließlich gilt für die Konfiguration (4):
- HL(p)=p2(p+2)2=p2+4⋅p+4−4⋅p−4p2+4⋅p+4=1−4⋅p+4p2+4⋅p+4⇒HL′(p)=4⋅p+1(p+2)2.
Richtig ist auch hier der Lösungsvorschlag 2. Allgemein lässt sich sagen:
- Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.
- Die Pole von HL′(p) sind dagegen stets identisch mit denen von HL(p).