Difference between revisions of "Aufgaben:Exercise 3.7Z: Partial Fraction Decomposition"

From LNTwww
Line 117: Line 117:
  
  
'''(4)'''  In gleicher Weise ergibt sich für die Konfiguration  $(2)$:
+
'''(4)'''  Similarly, the following is obtained for configuration  $(2)$:
 
:$$H_{\rm L}(p)  =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}=
 
:$$H_{\rm L}(p)  =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}=
 
   \frac{p^2 -4\cdot p  +8 }{p^2 +4\cdot p  +8}=
 
   \frac{p^2 -4\cdot p  +8 }{p^2 +4\cdot p  +8}=
Line 126: Line 126:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig sind also die <u> Lösungsvorschläge 2 und 3</u> im Gegensatz zur Aussage 1:
+
Thus, the <u> suggested solutions 2 and 3</u> are correct in contrast to statement 1:
* Während &nbsp;$H_{\rm L}(p)$&nbsp; zwei konjugiert&ndash;komplexe Nullstellen aufweist,  
+
* While &nbsp;$H_{\rm L}(p)$&nbsp; has two conjugate complex zeros,  
*besitzt &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; nur eine einzige Nullstelle bei &nbsp;$p_{\rm o}\hspace{0.01cm}' = 0$.
+
* &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; only has a single zero at &nbsp;$p_{\rm o}\hspace{0.01cm}' = 0$.
  
  
  
  
'''(5)'''&nbsp; Für die Konfiguration &nbsp;$(3)$&nbsp; gilt:
+
'''(5)'''&nbsp; The following applies for Konfiguration &nbsp;$(3)$&nbsp;:
 
:$$H_{\rm L}(p)  =
 
:$$H_{\rm L}(p)  =
 
   \frac{p^2 }{p^2 +4\cdot p  +8}=\frac{p^2 +4\cdot p  +8 -4\cdot p  -8 }{p^2 +4\cdot p  +8}
 
   \frac{p^2 }{p^2 +4\cdot p  +8}=\frac{p^2 +4\cdot p  +8 -4\cdot p  -8 }{p^2 +4\cdot p  +8}
Line 140: Line 140:
 
  \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}
 
  \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Die Nullstelle von &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; liegt nun bei &nbsp;$p_{\rm o}\hspace{0.01cm}' = -2$.
+
*The zero of &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; is now at &nbsp;$p_{\rm o}\hspace{0.01cm}' = -2$.
*Die Konstante ist &nbsp;$K\hspace{0.01cm}' = 4$ &nbsp; &#8658; &nbsp; richtig ist hier nur der <u> Lösungsvorschlag 2</u>.
+
*The constant is &nbsp;$K\hspace{0.01cm}' = 4$ &nbsp; &#8658; &nbsp; only <u> suggested solution 2</u> is correct here.
  
  
  
'''(6)'''&nbsp; Schließlich gilt für die Konfiguration &nbsp;$(4)$:
+
'''(6)'''&nbsp; Finally, the following holds for configuration &nbsp;$(4)$:
 
:$$H_{\rm L}(p)  =  \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p  +4 -4\cdot p  -4 }{p^2 +4\cdot p  +4}
 
:$$H_{\rm L}(p)  =  \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p  +4 -4\cdot p  -4 }{p^2 +4\cdot p  +4}
 
   = 1- \frac{4\cdot p  +4 }{p^2 +4\cdot p  +4}
 
   = 1- \frac{4\cdot p  +4 }{p^2 +4\cdot p  +4}
Line 151: Line 151:
 
  \cdot \frac{p+1}{(p+2)^2}
 
  \cdot \frac{p+1}{(p+2)^2}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Richtig ist auch hier <u>der Lösungsvorschlag 2</u>. Allgemein lässt sich sagen:  
+
<u>Suggested solution 2</u> is also correct here. In general, it can be said that:  
*Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.  
+
*The partial fraction decomposition changes the number and position of the zeros.  
*Die Pole von $H_{\rm L}\hspace{0.01cm}'(p)$ sind dagegen stets identisch mit denen von $H_{\rm L}(p)$.
+
* On the contrary, the poles of $H_{\rm L}\hspace{0.01cm}'(p)$ are always identical to those of $H_{\rm L}(p)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 10:57, 26 October 2021

Pole-zero diagrams

In the graph, four two-port networks are given by their pole–zero diagrams  $H_{\rm L}(p)$ .

  • They all have in common that the number  $Z$  of zeros is equal to the number  $N$  of poles.
  • The constant factor in each case is  $K=1$.


In the special case  $Z = N$  the residue theorem cannot be applied directly to compute the impulse response  $h(t)$ .

Rather, a partial fraction decomposition corresponding to

$$H_{\rm L}(p) =1- H_{\rm L}\hspace{0.05cm}'(p) \hspace{0.05cm}$$

must be made beforehand. Then,

$$h(t) = \delta(t)- h\hspace{0.03cm}'(t) \hspace{0.05cm}$$ holds for the impulse response.

 $h\hspace{0.03cm}'(t)$  is the inverse Laplace transform of  $H_{\rm L}\hspace{0.05cm}'(p)$ , where the condition  $Z' < N'$  is satisfied.

Two of the four configurations given are so-called all-pass filters.

  • This refers to two-port networks for which the Fourier spectral function satisfies the condition  $|H(f)| = 1$   ⇒   $a(f) = 0$ .
  • In Exercise 3.4Z it is given how the poles and zeros of such an all-pass filter must be positioned.


Furthermore, in this exercise the  $p$–transfer function

$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2} \hspace{0.05cm}$$

⇒   "configuration $(5)$" will be examined in more detail, which can be represented by one of the four pole–zero diagrams given in the graph if the parameter  $A$  is chosen correctly.



Please note:



Questions

1

Which of the sketched two-port networks are all-pass filters?

Configuration  $(1)$,
configuration  $(2)$,
configuration  $(3)$,
configuration  $(4)$.

2

Which quadripole has the transfer function  $H_{\rm L}^{(5)}(p)$?

Configuration  $(1)$,
configuration  $(2)$,
configuration  $(3)$,
configuration  $(4)$.

3

Compute the function  $H_{\rm L}\hspace{0.01cm}'(p)$  after a partial fraction decomposition for configuration  (1).
Enter the function value for  $p = 0$ .

$H_{\rm L}\hspace{0.01cm}'(p = 0) \ = \ $

4

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for the configuration  $(2)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.

5

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for the configuration  $(3)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.

6

Compute  $H_{\rm L}\hspace{0.01cm}'(p)$  for the configuration  $(4)$.  Which statements are true here?

$H_{\rm L}\hspace{0.01cm}'(p)$  has the same zeros as  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  has the same poles as  $H_{\rm L}(p)$.
The constant factor of  $H_{\rm L}\hspace{0.01cm}'(p)$  is  $K' = 8$.


Solution

(1)  The suggested solutions 1 and 2 are correct:

  • According to the criteria given in exercise 3.4Z, there is always an all-pass filter at hand if there is a corresponding zero  $p_{\rm o} = + A + {\rm j} \cdot B$  in the right $p$–half-plane for each pole  $p_{\rm x} = - A + {\rm j} \cdot B$  in the left half-plane.
  • Considering  $K = 1$  the attenuation function is then  $a(f) = 0 \ \rm Np$   ⇒   $|H(f)| = 1$.
  • The following can be seen from the graph on the information page:   The configurations  $(1)$ and  $(2)$ satisfy exactly these symmetry properties.


(2)  The suggested solution 4 is correct:

  • The transfer function  $H_{\rm L}^{(5)}(p)$  is also described by configuration  $(4)$  as the following calculation shows:
$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} = \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2} =\frac{p/A}{{p/A}+2+ {A/p}} = \hspace{0.2cm}\frac{p^2}{p^2 + 2A \cdot p + A^2} = \frac{p^2}{(p+A)^2 }= H_{\rm L}^{(4)}(p) \hspace{0.05cm}.$$
  • The double zero is at  $p_{\rm o} = 0$ and the double pole at  $p_{\rm x} = -A = -2$.


(3)  The following holds for configuration  $(1)$ :

$$H_{\rm L}(p) =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{4}{p+2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{H_{\rm L}\hspace{-0.05cm}'(p =0) =2} \hspace{0.05cm}.$$


(4)  Similarly, the following is obtained for configuration  $(2)$:

$$H_{\rm L}(p) =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}= \frac{p^2 -4\cdot p +8 }{p^2 +4\cdot p +8}= \hspace{0.2cm}\frac{p^2 +4\cdot p +8 -8\cdot p}{p^2 +4\cdot p +8} =1- \frac{8\cdot p}{p^2 +4\cdot p +8}=1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 8 \cdot \frac{p}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$

Thus, the suggested solutions 2 and 3 are correct in contrast to statement 1:

  • While  $H_{\rm L}(p)$  has two conjugate complex zeros,
  •  $H_{\rm L}\hspace{0.01cm}'(p)$  only has a single zero at  $p_{\rm o}\hspace{0.01cm}' = 0$.



(5)  The following applies for Konfiguration  $(3)$ :

$$H_{\rm L}(p) = \frac{p^2 }{p^2 +4\cdot p +8}=\frac{p^2 +4\cdot p +8 -4\cdot p -8 }{p^2 +4\cdot p +8} = 1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = 4 \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$
  • The zero of  $H_{\rm L}\hspace{0.01cm}'(p)$  is now at  $p_{\rm o}\hspace{0.01cm}' = -2$.
  • The constant is  $K\hspace{0.01cm}' = 4$   ⇒   only suggested solution 2 is correct here.


(6)  Finally, the following holds for configuration  $(4)$:

$$H_{\rm L}(p) = \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p +4 -4\cdot p -4 }{p^2 +4\cdot p +4} = 1- \frac{4\cdot p +4 }{p^2 +4\cdot p +4} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 4 \cdot \frac{p+1}{(p+2)^2} \hspace{0.05cm}.$$

Suggested solution 2 is also correct here. In general, it can be said that:

  • The partial fraction decomposition changes the number and position of the zeros.
  • On the contrary, the poles of $H_{\rm L}\hspace{0.01cm}'(p)$ are always identical to those of $H_{\rm L}(p)$.