Difference between revisions of "Aufgaben:Exercise 1.3Z: Thermal Noise"

From LNTwww
m
m
Line 12: Line 12:
 
However, this is limited to  $6\text{ THz}$  for physical reasons.  Furthermore, it can be observed that this minimum value can only be achieved with exact impedance matching.
 
However, this is limited to  $6\text{ THz}$  for physical reasons.  Furthermore, it can be observed that this minimum value can only be achieved with exact impedance matching.
  
In the realization of a circuit unit - for example, an amplifier - the effective noise power density is usually significantly greater, since several noise sources add up, and mismatches also play a role.  This effect is captured by the noise value  $F \ge 1$  .  It holds that:
+
In the realization of a circuit unit - for example, an amplifier - the effective noise power density is usually significantly greater, since several noise sources add up, and mismatches also play a role.  This effect is captured by the noise factor  $F \ge 1$  .  It holds that:
 
:$$N_0 = F \cdot {N_{\rm 0, \hspace{0.05cm}min}}= F \cdot k_{\rm B} \cdot \theta \hspace{0.05cm}.$$
 
:$$N_0 = F \cdot {N_{\rm 0, \hspace{0.05cm}min}}= F \cdot k_{\rm B} \cdot \theta \hspace{0.05cm}.$$
 
With a bandwidth  $B$, the effective noise power is characterized by:
 
With a bandwidth  $B$, the effective noise power is characterized by:
Line 38: Line 38:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Qualitätskriterien|Qualitätskriterien]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Qualitätskriterien|Quality Criteria]].
*Bezug genommen wird insbesondere auf die Seite   [[Modulation_Methods/Qualitätskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell|Einige Anmerkungen zum AWGN–Kanalmodel]].
+
*Particular reference is made to the page   [[Modulation_Methods/Qualitätskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell|Some remarks on the AWGN channel model]].
*Durch die Angabe der Leistungen in  $\rm W$att  sind diese unabhängig vom Bezugswiderstand  $R$, während die Leistung mit der Einheit  $\rm V^2$  nur für  $R = 1\ \Omega$  direkt ausgewertet werden kann.
+
*By specifying the powers in  $\rm W$atts , they are independent of the reference resistance  $R$, while power with the unit  $\rm V^2$  can only be evaluated directly for  $R = 1\ \Omega$ .
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Rauschleistungsdichte &nbsp;$N_0$&nbsp; mit der Rauschzahl &nbsp;$F = 10$&nbsp; und &nbsp;$θ = 290^\circ$&nbsp; Kelvin.
+
{Calculate the noise power density &nbsp;$N_0$&nbsp; with a noise factor of &nbsp;$F = 10$&nbsp; and &nbsp;$θ = 290^\circ$&nbsp; Kelvin.
 
|type="{}"}
 
|type="{}"}
 
$N_0 \ = \ $ { 4 3% }  $\ \cdot 10^{ -20 }\ \text{W/Hz}$  
 
$N_0 \ = \ $ { 4 3% }  $\ \cdot 10^{ -20 }\ \text{W/Hz}$  
  
{Wie groß ist die maximale Rauschleistung (ohne Bandbegrenzung)?
+
{What is the maximum noise power (without bandwidth limits)?
 
|type="{}"}
 
|type="{}"}
 
$N_{\rm max} \ = \ $ { 0.24 3% } $\ \cdot 10^{ -6 }\ \text{W/Hz}$  
 
$N_{\rm max} \ = \ $ { 0.24 3% } $\ \cdot 10^{ -6 }\ \text{W/Hz}$  

Revision as of 17:15, 10 November 2021

Beispielhafte Signale für
TP– und BP–Rauschen

A fundamental disturbance and one that occurs in any communication system is thermal noise , since any resistance  $R$  with an absolute temperature of  $θ$  (in "degrees Kelvin") produces a noise signal  $n(t)$  with a (one-sided) noise power density

$${N_{\rm 0, \hspace{0.05cm}min}}= k_{\rm B} \cdot \theta \hspace{0.3cm}\left(k_{\rm B} = 1.38 \cdot 10^{-23} \hspace{0.05cm}{\rm Ws}/{\rm K}\right)$$

where $k_{\rm B}$  denotes the Boltzmann constant (from German "Konstante").

However, this is limited to  $6\text{ THz}$  for physical reasons.  Furthermore, it can be observed that this minimum value can only be achieved with exact impedance matching.

In the realization of a circuit unit - for example, an amplifier - the effective noise power density is usually significantly greater, since several noise sources add up, and mismatches also play a role. This effect is captured by the noise factor  $F \ge 1$  .  It holds that:

$$N_0 = F \cdot {N_{\rm 0, \hspace{0.05cm}min}}= F \cdot k_{\rm B} \cdot \theta \hspace{0.05cm}.$$

With a bandwidth  $B$, the effective noise power is characterized by:

$$N = N_0 \cdot B \hspace{0.1cm}\left(= N_0 \cdot B\cdot R = \sigma_n^2\right) \hspace{0.01cm}.$$
  • According to the first equation, the result is the actual, physical power in "watts"  $\rm (W)$.
  • According to the second equation, given in brackets, the result has the unit   „$\rm V^{ 2 }$”.
  • This means that the power is here converted to the reference resistance  $R = 1\ Ω$  – as is often the case in communications engineering.
  • This equation must also be used to calculate the rms value (the dispersion)  $σ_n$  of the noise signal  $n(t)$ .


All equations apply regardless of whether the noise is low-pass or band-pass. The graph shows two noise signals  $n_1(t)$  and  $n_2(t)$  of equal bandwidth.  Question   (4)  asks which of these signals will appear at the output of a lowpass and a bandpass, respectively.

The two-sided noise power density of band-limited lowpass noise  $n_{\rm TP}(t)$  is:

$$ {\it \Phi}_{n, {\hspace{0.05cm}\rm TP}}(f) = \left\{ \begin{array}{c} N_0/2 \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < B,} \\ {\rm sonst.} \\ \end{array}$$

In contrast, for bandpass noise  $n_{\rm BP}(t)$  with center frequency  $f_{\rm M}$, it holds that:

$${\it \Phi}_{n, {\hspace{0.05cm}\rm BP}}(f) = \left\{ \begin{array}{c} N_0/2 \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f - f_{\rm M}\hspace{0.05cm} \right| < B/2,} \\ {\rm sonst.} \\ \end{array}.$$

For all subsequent numerical calculations it is assumed:

$$ F = 10, \hspace{0.2cm}\theta = 290\,{\rm K},\hspace{0.2cm}R = 50\,{\rm \Omega},\hspace{0.2cm}B = 30\,{\rm kHz},\hspace{0.2cm}f_{\rm M} = 0 \hspace{0.1cm}{\rm bzw.}\hspace{0.1cm}100\,{\rm kHz}\hspace{0.05cm}.$$





Hints:

  • This exercise belongs to the chapter  Quality Criteria.
  • Particular reference is made to the page  Some remarks on the AWGN channel model.
  • By specifying the powers in  $\rm W$atts , they are independent of the reference resistance  $R$, while power with the unit  $\rm V^2$  can only be evaluated directly for  $R = 1\ \Omega$ .



Questions

1

Calculate the noise power density  $N_0$  with a noise factor of  $F = 10$  and  $θ = 290^\circ$  Kelvin.

$N_0 \ = \ $

$\ \cdot 10^{ -20 }\ \text{W/Hz}$

2

What is the maximum noise power (without bandwidth limits)?

$N_{\rm max} \ = \ $

$\ \cdot 10^{ -6 }\ \text{W/Hz}$

3

Welche Rauschleistung  $N$  ergibt sich mit der Bandbreite  $B = 30\text{ kHz}$?  Wie groß ist der Rauscheffektivwert  $σ_n$?

$N \ = \ $

$\ \cdot 10^{ -16 }\ \text{W/Hz}$
$σ_n \ = \ $

$\ \cdot 10^{ -6 }\ \text{V}$

4

Welches der Signale –  $n_1(t)$  oder  $n_2(t)$  – zeigt Tiefpass– und welches Bandpass–Rauschen?

Das Rauschsignal  $n_1(t)$  hat Tiefpass–Charakter.
Das Rauschsignal  $n_1(t)$  hat Bandpass–Charakter.

5

Welchen Wert hat die Rauschleistungsdichte des Tiefpass–Rauschens bei der Frequenz  $f = 20\text{ kHz}$?  Es gelte  $B = 30\text{ kHz}$.

${\it Φ}_{n, \hspace{0.05cm}\rm TP}(f = 20 \ \rm kHz) \ = \ $

$\ \cdot 10^{ -12 }\ \text{W/Hz}$

6

Welchen Wert besitzt die Rauschleistungsdichte des Bandpass–Rauschens bei  $f = 120\text{ kHz}$?  Es gelte  $f_{\rm M} = 100\text{ kHz}$  und  $B = 30\text{ kHz}$.

${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f = 120 \ \rm kHz) \ = \ $

$\ \cdot 10^{ -12 }\ \text{W/Hz}$


Musterlösung

(1)  Mit der Boltzmann–Konstante  $k_{\rm B}$  gilt:

$$N_0 = F \cdot k_{\rm B} \cdot \theta = 10 \cdot 1.38\hspace{0.05cm}\cdot 10^{-23} \hspace{0.05cm}\frac{\rm Ws}{\rm K}\cdot 290\,{\rm K} \hspace{0.15cm}\underline {\approx 4\hspace{0.05cm}\cdot 10^{-20} \hspace{0.05cm}{\rm W}/{\rm Hz}}\hspace{0.05cm}.$$


(2)  Die angegebene Rauschleistungsdichte  $N_0$  ist physikalisch auf  $6$  THz begrenzt.  Damit beträgt die maximale Rauschleistung:

$$N_{\rm max} = 4\hspace{0.05cm}\cdot 10^{-20} \hspace{0.08cm}\frac{\rm W}{\rm Hz}\cdot 6 \cdot10^{12} \hspace{0.08cm}{\rm Hz}\hspace{0.15cm}\underline {= 0.24\hspace{0.08cm}\cdot 10^{-6}\;{\rm W}}\hspace{0.05cm}.$$


(3)  Nun ergibt sich für die Rauschleistung:

$$N = N_0 \cdot B = 4\hspace{0.08cm}\cdot 10^{-20} \hspace{0.08cm}\frac{\rm W}{\rm Hz}\cdot 3 \cdot10^{4} \hspace{0.08cm}{\rm Hz}\hspace{0.15cm}\underline {= 12\hspace{0.05cm}\cdot 10^{-16}\;{\rm W}}\hspace{0.05cm}.$$
  • Umgerechnet auf den Bezugswiderstand  $R = 1 \ Ω$:
$$N = N_0 \cdot B \cdot R = 12\hspace{0.05cm}\cdot 10^{-16}\;{\rm W}\hspace{0.05cm} \cdot 50 \; {\rm \Omega}= 6\hspace{0.05cm}\cdot 10^{-14}\;{\rm V^2}\hspace{0.05cm}.$$
Leistungsdichtespektren bei
bandbegrenztem Rauschen
  • Der Rauscheffektivwert  $σ_n$  ist die Quadratwurzel hieraus:
$$\sigma_n= \sqrt{6\hspace{0.05cm}\cdot 10^{-14}\;{\rm V^2}} \hspace{0.15cm}\underline {= 0.245 \hspace{0.05cm}\cdot 10^{-6}\;{\rm V}}\hspace{0.05cm}.$$


(4)  Richtig ist der Lösungsvorschlag 1:

  • Im Zufallssignal  $n_2(t)$  erkennt man gewisse Regelmäßigkeiten ähnlich einer harmonischen Schwingung – es ist Bandpass–Rauschen.
  • Dagegen handelt es sich beim Signal  $n_1(t)$  um Tiefpass–Rauschen.


(5)  Die Rauschleistungsdichte des Zufallssignals  $n_1(t)$  ist im Frequenzbereich  $|f| < 30$  kHz konstant:

$${\it \Phi}_{n,\hspace{0.05cm}{ \rm TP} }(f) \hspace{-0.05cm}=\hspace{-0.05cm} \frac{N_0}{2} \hspace{0.15cm}\underline {=2\hspace{0.05cm}\hspace{-0.05cm}\cdot \hspace{-0.05cm} 10^{-12} \hspace{0.05cm}{\rm W}/{\rm Hz}}\hspace{0.05cm}.$$
  • Dieser Wert gilt somit auch für die Frequenz  $f = 20$  kHz.


(6)  Wie aus der Grafik hervorgeht, ist  ${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f)$  nur im Bereich zwischen  $85$  kHz und  $115$  kHz ungleich Null, wenn die Bandbreite  $B = 30$  kHz beträgt.

  • Bei der Frequenz  $f = 120$  kHz ist die Rauschleistungsdichte somit Null:
$${\it Φ}_{n, \hspace{0.05cm}\rm BP}(f = 120 \ \rm kHz)\hspace{0.15cm}\underline{=0}.$$