Difference between revisions of "Theory of Stochastic Signals/Poisson Distribution"

From LNTwww
Line 75: Line 75:
  
  
==Gegenüberstellung Binomialverteilung vs. Poissonverteilung==
+
==Comparison of binomial distribution vs. Poisson distribution==
 
<br>
 
<br>
Nun sollen sowohl die Gemeinsamkeiten als auch die Unterschiede zwischen binomial&ndash; und poissonverteilten Zufallsgrößen nochmals herausgearbeitet werden.  
+
Now both the similarities and the differences between binomial and poisson distributed random variables shall be worked out again.  
  
Die&nbsp; '''Binomialverteilung'''&nbsp; ist zur Beschreibung von solchen stochastischen Ereignissen geeignet, die durch einen vorgegebenen Takt&nbsp; $T$&nbsp; gekennzeichnet sind.&nbsp; Beispielsweise beträgt bei&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|ISDN]]&nbsp; (''Integrated Services Digital Network'')&nbsp; mit&nbsp; $64 \ \rm kbit/s$&nbsp; die Taktzeit&nbsp; $T \approx 15.6 \ \rm &micro; s$.  
+
The&nbsp; '''binomial distribution'''&nbsp; is suitable for the description of such stochastic events, which are characterized by a given clock&nbsp; $T$&nbsp; . &nbsp; For example, for&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|ISDN]]&nbsp; (''Integrated Services Digital Network'')&nbsp; with&nbsp; $64 \ \rm kbit/s$&nbsp; the clock time&nbsp; $T \approx 15.6 \ \rm &micro; s$.  
*Nur in diesem Zeitraster treten binäre Ereignisse auf.&nbsp; Solche Ereignisse sind zum Beispiel die fehlerfreie&nbsp; $(e_i = 0)$&nbsp; oder fehlerhafte&nbsp; $(e_i = 1)$&nbsp; Übertragung einzelner Symbole.  
+
*Only in this time grid do binary events occur&nbsp; Such events are, for example, error-free&nbsp; $(e_i = 0)$&nbsp; or errored&nbsp; $(e_i = 1)$&nbsp; transmission of individual symbols.  
*Die Binomialverteilung ermöglicht nun statistische Aussagen über die Anzahl der in einem längeren Zeitintervall&nbsp; $T_{\rm I} = I · T$&nbsp; zu erwartenden Übertragungsfehler entsprechend dem oberen Diagramm der folgenden Grafik (blau markierte Zeitpunkte).
+
*The binomial distribution now allows statistical statements about the number of transmission errors to be expected in a longer time interval&nbsp; $T_{\rm I} = I T$&nbsp; according to the upper diagram of the following graph (time marked in blue).
  
  
[[File:  EN_Sto_T_2_4_S3.png |center|frame| Schema für Binomialverteilung und Poissonverteilung]]
+
[[File:  EN_Sto_T_2_4_S3.png |center|frame| Scheme for binomial distribution and Poisson distribution]]
  
Auch die&nbsp; '''Poissonverteilung'''&nbsp; macht Aussagen über die Anzahl eintretender Binärereignisse in einem endlichen Zeitintervall:  
+
Also the&nbsp; '''Poisson distribution'''&nbsp; makes statements about the number of occurring binary events in a finite time interval:  
*Geht man hierbei vom gleichen Betrachtungszeitraum&nbsp; $T_{\rm I}$&nbsp; aus und vergrößert die Anzahl&nbsp; $I$&nbsp; der Teilintervalle immer mehr, so wird die Taktzeit&nbsp; $T$, zu der jeweils ein neues Binärereignis&nbsp; („0” oder „1”)&nbsp; eintreten kann, immer kleiner.&nbsp; Im Grenzfall geht&nbsp; $T$&nbsp; gegen Null.  
+
*If one assumes here the same observation period&nbsp; $T_{\rm I}$&nbsp; and increases the number&nbsp; $I$&nbsp; of subintervals more and more, then the clock time&nbsp; $T$, at which in each case a new binary event&nbsp; ("0" or "1")&nbsp; can occur, becomes smaller and smaller.&nbsp; In the limiting case&nbsp; $T$&nbsp; goes towards zero.  
*Das heißt:&nbsp; Bei der Poissonverteilung sind die binären Ereignisse nicht nur zu diskreten, durch ein Zeitraster vorgegebenen Zeitpunkten möglich, sondern jederzeit.&nbsp; Das untere Zeitdiagramm verdeutlicht diesen Sachverhalt.  
+
*This means:&nbsp; In the Poisson distribution, the binary events are possible not only at discrete points in time given by a time grid, but at any time.&nbsp; The time diagram below illustrates this fact.  
*Um im Mittel während der Zeit&nbsp; $T_{\rm I}$&nbsp; genau so viele „Einsen” wie bei der Binomialverteilung zu erhalten&nbsp; (im Beispiel:&nbsp; sechs), muss allerdings die auf das infinitesimal kleine Zeitintervall&nbsp; $T$&nbsp; bezogene charakteristische Wahrscheinlichkeit&nbsp; $p = {\rm Pr}( e_i = 1)$&nbsp; gegen Null tendieren.  
+
*In order to obtain on average during time&nbsp; $T_{\rm I}$&nbsp; exactly as many "ones" as in the binomial distribution&nbsp; (in the example:&nbsp; six), however, the characteristic probability&nbsp; related to the infinitesimally small time interval&nbsp; $T$&nbsp; must tend to zero&nbsp; $p = {\rm Pr}( e_i = 1)$&nbsp; .  
  
  
==Anwendungen der Poissonverteilung==
+
==Applications of the Poisson distribution==
 
<br>
 
<br>
Die Poissonverteilung ist das Ergebnis eines so genannten&nbsp; [https://de.wikipedia.org/wiki/Poisson-Prozess Poissonprozesses].&nbsp; Ein solcher dient häufig als Modell für Ereignisfolgen, die zu zufälligen Zeitpunkten eintreten können.&nbsp; Beispiele für derartige Ereignisse sind
+
The Poisson distribution is the result of a so-called&nbsp; [https://en.wikipedia.org/wiki/Poisson_point_process Poisson process].&nbsp; Such a process is often used as a model for sequences of events that may occur at random times.&nbsp; Examples of such events include.
*der Ausfall von Geräten – eine wichtige Aufgabenstellung in der Zuverlässigkeitstheorie,  
+
*the failure of equipment - an important task in reliability theory,  
*das Schrotrauschen bei der optischen Übertragung, und
+
*the shot noise in optical transmission, and
*der Beginn von Telefongesprächen in einer Vermittlungsstelle&nbsp; („Verkehrstheorie”).  
+
*the start of telephone calls in a switching center&nbsp; ("teletraffic engineering").  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Gehen bei einer Vermittlungsstelle im Langzeitmittel neunzig Vermittlungswünsche pro Minute&nbsp; $($also&nbsp; $λ = 1.5 \text{ pro Sekunde})$&nbsp; ein, so lauten die Wahrscheinlichkeiten&nbsp; $p_\mu$, dass in einem beliebigen Zeitraum von einer Sekunde genau&nbsp; $\mu$&nbsp; Belegungen auftreten:  
+
$\text{Example 3:}$&nbsp; If ninety switching requests per minute&nbsp; $($also&nbsp; $λ = 1.5 \text{ per second})$&nbsp; are received by answitching center on a long-term average, the probabilities&nbsp; $p_\mu$ that exactly&nbsp; $\mu$&nbsp; occupancies occur in any one-second period are:  
 
:$$p_\mu = \frac{1.5^\mu}{\mu!}\cdot {\rm e}^{-1.5}.$$
 
:$$p_\mu = \frac{1.5^\mu}{\mu!}\cdot {\rm e}^{-1.5}.$$
  
Es ergeben sich die Zahlenwerte &nbsp;$p_0 = 0.223$, &nbsp;$p_1 = 0.335$, &nbsp;$p_2 = 0.251$, usw.  
+
This gives the numerical values &nbsp;$p_0 = 0.223$, &nbsp;$p_1 = 0.335$, &nbsp;$p_2 = 0.251$, etc.  
  
Daraus lassen sich weitere Kenngrößen ableiten:
+
From this, further characteristics can be derived:
*Die Abstand&nbsp; $τ$&nbsp; zwischen zwei Vermittlungswünschen genügt der&nbsp; [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Einseitige_Exponentialverteilung|Exponentialverteilung]].
+
*The distance&nbsp; $τ$&nbsp; between two switching desires satisfies the&nbsp; [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#One-sided_exponential_distribution|exponential distribution]].
*Die mittlere Zeitspanne zwischen zwei Vermittlungswünschen beträgt&nbsp; ${\rm E}[\hspace{0.05cm}τ\hspace{0.05cm}] = 1/λ ≈ 0.667 \ \rm s$.}}
+
*The mean time interval between two switching desires is&nbsp; ${\rm E}[\hspace{0.05cm}τ\hspace{0.05cm}] = 1/λ ≈ 0.667 \rm s$.}}
  
==Aufgaben zum Kapitel==
+
 
 +
==Exercises for the chapter==
 
<br>
 
<br>
 
[[Aufgaben:2.5 „Binomial” oder „Poisson”?|Aufgabe 2.5: „Binomial” oder „Poisson”?]]
 
[[Aufgaben:2.5 „Binomial” oder „Poisson”?|Aufgabe 2.5: „Binomial” oder „Poisson”?]]

Revision as of 18:21, 12 December 2021

Probabilities of the Poisson distribution


$\text{Definition:}$  The  Poisson distribution  is a limiting case of the  binomial distribution, where.

  • on the one hand, the limit transitions  $I → ∞$  and  $p → 0$  are assumed,
  • additionally, it is assumed that the product  $I · p = λ$  has a finite value.


The parameter  $λ$  gives the average number of "ones" in a fixed unit of time and is called the  rate .


Further, it should be noted:

  • In contrast to the binomial distribution  $(0 ≤ μ ≤ I)$  here the random quantity can take on arbitrarily large (integer, non-negative) values.
  • This means that the set of possible values here is uncountable.
  • But since no intermediate values can occur, this is also called a  discrete distribution.


$\text{Calculation rule:}$ 

Considering above limit transitions for the  Probabilities of the binomial distribution,  it follows for the  Probabilities of Poisson Distribution :

$$p_\mu = {\rm Pr} ( z=\mu ) = \lim_{I\to\infty} \cdot \frac{I !}{\mu ! \cdot (I-\mu )!} \cdot (\frac{\lambda}{I} )^\mu \cdot ( 1-\frac{\lambda}{I})^{I-\mu}.$$

From this, after some algebraic transformations, we obtain:

$$p_\mu = \frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda}.$$


Probabilities of the Poisson distribution

$\text{Example 1:}$  The probabilities

  • of the binomial distribution with  $I =6$, $p = 0.4$,  and
  • of the Poisson distribution with  $λ = 2.4$


can be seen in the graph on the right. One can see:

  • Both distributions have the same mean  $m_1 = 2.4$.
  • In the Poisson distribution  (red arrows and labels)  the "outer values" are more probable than in the binomial distribution.
  • In addition, random variables  $z > 6$  are also possible with the Poisson distribution;  but their probabilities are also rather small at the chosen rate.


Moments of the Poisson distribution


$\text{Calculation rule:}$ 

The mean and rms of the Poisson distribution are obtained directly from the  corresponding equations of the binomial distribution  by twofold limiting:

$$m_1 =\lim_{\left.{I\hspace{0.05cm}\to\hspace{0.05cm}\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0} }\right.} I \cdot p= \lambda,$$
$$\sigma =\lim_{\left.{I\hspace{0.05cm}\to\hspace{0.05cm}\infty \atop {p\hspace{0.05cm}\to\hspace{0.05cm} 0} }\right.} \sqrt{I \cdot p \cdot (1-p)} = \sqrt {\lambda}.$$

From this it can be seen that in the Poisson distribution it is always  $σ^2 = m_1 = λ$  .


moments of Poisson distribution

$\text{Example 2:}$ 

As in  $\text{Example 1}$ , here we compare:

  • the binomial distribution with  $I =6$,  $p = 0.4$,  and
  • and the Poisson distribution with  $λ = 2.4$.


One can see from the accompanying sketch:

  • Both distributions have exactly the same mean  $m_1 = 2.4$.
  • For the Poisson distribution (marked red in the figure), the dispersion  $σ ≈ 1.55$.
  • In contrast, for the (blue) binomial distribution, the standard deviation is only  $σ = 1.2$.


With the interactive applet  Binomial– and Poisson Distribution  you can determine the probabilities and means (moments) of the Poisson distribution for any  $λ$-values and visualize the similarities and differences compared to the binomial distribution.


Comparison of binomial distribution vs. Poisson distribution


Now both the similarities and the differences between binomial and poisson distributed random variables shall be worked out again.

The  binomial distribution  is suitable for the description of such stochastic events, which are characterized by a given clock  $T$  .   For example, for  ISDN  (Integrated Services Digital Network)  with  $64 \ \rm kbit/s$  the clock time  $T \approx 15.6 \ \rm µ s$.

  • Only in this time grid do binary events occur  Such events are, for example, error-free  $(e_i = 0)$  or errored  $(e_i = 1)$  transmission of individual symbols.
  • The binomial distribution now allows statistical statements about the number of transmission errors to be expected in a longer time interval  $T_{\rm I} = I ⋅ T$  according to the upper diagram of the following graph (time marked in blue).


Scheme for binomial distribution and Poisson distribution

Also the  Poisson distribution  makes statements about the number of occurring binary events in a finite time interval:

  • If one assumes here the same observation period  $T_{\rm I}$  and increases the number  $I$  of subintervals more and more, then the clock time  $T$, at which in each case a new binary event  ("0" or "1")  can occur, becomes smaller and smaller.  In the limiting case  $T$  goes towards zero.
  • This means:  In the Poisson distribution, the binary events are possible not only at discrete points in time given by a time grid, but at any time.  The time diagram below illustrates this fact.
  • In order to obtain on average during time  $T_{\rm I}$  exactly as many "ones" as in the binomial distribution  (in the example:  six), however, the characteristic probability  related to the infinitesimally small time interval  $T$  must tend to zero  $p = {\rm Pr}( e_i = 1)$  .


Applications of the Poisson distribution


The Poisson distribution is the result of a so-called  Poisson process.  Such a process is often used as a model for sequences of events that may occur at random times.  Examples of such events include.

  • the failure of equipment - an important task in reliability theory,
  • the shot noise in optical transmission, and
  • the start of telephone calls in a switching center  ("teletraffic engineering").


$\text{Example 3:}$  If ninety switching requests per minute  $($also  $λ = 1.5 \text{ per second})$  are received by answitching center on a long-term average, the probabilities  $p_\mu$ that exactly  $\mu$  occupancies occur in any one-second period are:

$$p_\mu = \frac{1.5^\mu}{\mu!}\cdot {\rm e}^{-1.5}.$$

This gives the numerical values  $p_0 = 0.223$,  $p_1 = 0.335$,  $p_2 = 0.251$, etc.

From this, further characteristics can be derived:

  • The distance  $τ$  between two switching desires satisfies the  exponential distribution.
  • The mean time interval between two switching desires is  ${\rm E}[\hspace{0.05cm}τ\hspace{0.05cm}] = 1/λ ≈ 0.667 \rm s$.


Exercises for the chapter


Aufgabe 2.5: „Binomial” oder „Poisson”?

Aufgabe 2.5Z: Blumenwiese