Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.1: Gaussian ACF and Gaussian Low-Pass"

From LNTwww
Line 70: Line 70:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  The variance is equal to the ACF value at  τ=0, so  σ2x=0.04 V2.
+
'''(1)'''  The variance is equal to the ACF value at  τ=0,   so  σ2x=0.04 V2.
*From this follows  σx=0.2 V_ .
+
*From this follows  σx=0.2 V_.
  
  
  
 
'''(2)'''  The equivalent ACF duration can be determined via the rectangle of equal area.
 
'''(2)'''  The equivalent ACF duration can be determined via the rectangle of equal area.
*According to the sketch, we obtain  \nabla \tau_x\hspace{0.15cm}\underline {= 1 \ \rm µ s}.
+
*According to the sketch,  we obtain  \nabla \tau_x\hspace{0.15cm}\underline {= 1 \ \rm µ s}.
  
  
  
'''(3)'''  The PDS is the Fourier transform of the ACF.  
+
'''(3)'''  The PSD is the Fourier transform of the ACF.  
 
*With the given Fourier correspondence holds:
 
*With the given Fourier correspondence holds:
 
:$${\it \Phi}_{x}(f) = \sigma_x^2 \cdot  {\rm \nabla} \tau_x \cdot
 
:$${\it \Phi}_{x}(f) = \sigma_x^2 \cdot  {\rm \nabla} \tau_x \cdot
 
{\rm e}^{- \pi ({\rm \nabla} \tau_x \hspace{0.03cm}\cdot \hspace{0.03cm}f)^2} .$$
 
{\rm e}^{- \pi ({\rm \nabla} \tau_x \hspace{0.03cm}\cdot \hspace{0.03cm}f)^2} .$$
  
*At frequency f=0,  we obtain:
+
*At frequency  f=0,  we obtain:
 
:$${\it \Phi}_{x}(f  = 0) = \sigma_x^2 \cdot  {\rm \nabla} \tau_x =
 
:$${\it \Phi}_{x}(f  = 0) = \sigma_x^2 \cdot  {\rm \nabla} \tau_x =
 
\rm 0.04 \hspace{0.1cm} V^2 \cdot 10^{-6} \hspace{0.1cm} s \hspace{0.15cm} \underline{= 40
 
\rm 0.04 \hspace{0.1cm} V^2 \cdot 10^{-6} \hspace{0.1cm} s \hspace{0.15cm} \underline{= 40
Line 92: Line 92:
  
  
'''(4)'''&nbsp; <u>Solutions 1 and 3</u> are correct:
+
'''(4)'''&nbsp; <u>Solutions 1 and 3</u>&nbsp; are correct:
 
*In general,&nbsp; Φy(f)=Φx(f)|H(f)|2.&nbsp; It follows:
 
*In general,&nbsp; Φy(f)=Φx(f)|H(f)|2.&nbsp; It follows:
 
:$${\it \Phi}_{y}(f) =  \sigma_x^2 \cdot  {\rm \nabla} \tau_x \cdot
 
:$${\it \Phi}_{y}(f) =  \sigma_x^2 \cdot  {\rm \nabla} \tau_x \cdot
 
{\rm e}^{- \pi ({\rm \nabla} \tau_x \cdot f)^2}\cdot H_{\rm 0}^2
 
{\rm e}^{- \pi ({\rm \nabla} \tau_x \cdot f)^2}\cdot H_{\rm 0}^2
 
\cdot{\rm e}^{- 2 \pi (f/ {\rm \Delta} f)^2} .$$
 
\cdot{\rm e}^{- 2 \pi (f/ {\rm \Delta} f)^2} .$$
*By combining the two exponential functions, we obtain:
+
*By combining the two exponential functions,&nbsp; we obtain:
 
:$${\it \Phi}_{y}(f) =  \sigma_x^2 \cdot  {\rm \nabla} \tau_x \cdot H_0^2 \cdot
 
:$${\it \Phi}_{y}(f) =  \sigma_x^2 \cdot  {\rm \nabla} \tau_x \cdot H_0^2 \cdot
 
{\rm e}^{- \pi\cdot  ({\rm \nabla} \tau_x^2 + 2/\Delta f^2  ) \hspace{0.1cm}\cdot f^2}.$$
 
{\rm e}^{- \pi\cdot  ({\rm \nabla} \tau_x^2 + 2/\Delta f^2  ) \hspace{0.1cm}\cdot f^2}.$$
*Also Φy(f)&nbsp; is Gaussian and never wider than&nbsp; Φx(f).&nbsp; For f,&nbsp; the approximation&nbsp; Φy(f)Φx(f) holds.  
+
*Also&nbsp; Φy(f)&nbsp; is Gaussian and never wider than&nbsp; Φx(f).&nbsp; For f,&nbsp; the approximation&nbsp; Φy(f)Φx(f)&nbsp; holds.  
 
*As&nbsp; Δf&nbsp; gets smaller,&nbsp; Φy(f)&nbsp; gets narrower&nbsp; (so the second statement is false).  
 
*As&nbsp; Δf&nbsp; gets smaller,&nbsp; Φy(f)&nbsp; gets narrower&nbsp; (so the second statement is false).  
*H0&nbsp; actually affects only the PDS height, but not the width of the PDS.
+
*H0&nbsp; actually affects only the PSD height,&nbsp; but not the width of the PSD.
 
   
 
   
  
  
'''(5)'''&nbsp; Analogous to task&nbsp; '''(1)''',&nbsp; it can be written for the PDS of the output signal&nbsp; y(t)&nbsp;:
+
'''(5)'''&nbsp; Analogous to task&nbsp; '''(1)''',&nbsp; it can be written for the PSD of the output signal&nbsp; y(t):
 
:$${\it \Phi}_{y}(f) =  \sigma_y^2 \cdot  {\rm \nabla} \tau_y \cdot
 
:$${\it \Phi}_{y}(f) =  \sigma_y^2 \cdot  {\rm \nabla} \tau_y \cdot
 
{\rm e}^{- \pi  \cdot {\rm \nabla} \tau_y^2 \cdot f^2 }.$$
 
{\rm e}^{- \pi  \cdot {\rm \nabla} \tau_y^2 \cdot f^2 }.$$
Line 113: Line 113:
 
:$${{\rm \nabla} \tau_y^2} = {{\rm \nabla} \tau_x^2} + \frac {2}{{\rm
 
:$${{\rm \nabla} \tau_y^2} = {{\rm \nabla} \tau_x^2} + \frac {2}{{\rm
 
\Delta} f^2}.$$
 
\Delta} f^2}.$$
*Solving the equation for&nbsp; Δf&nbsp; and considering the values&nbsp; \nabla \tau_x {= 1 \ \rm &micro; s}&nbsp; as well as&nbsp;  \nabla \tau_y {= 3 \ \rm &micro; s},  it follows:
+
*Solving the equation for&nbsp; Δf&nbsp; and considering the values&nbsp; \nabla \tau_x {= 1 \ \rm &micro; s}&nbsp; as well as&nbsp;  \nabla \tau_y {= 3 \ \rm &micro; s},&nbsp; it follows:
 
:$${\rm \Delta} f = \sqrt{\frac{2}{{\rm \nabla} \tau_y^2 - {\rm
 
:$${\rm \Delta} f = \sqrt{\frac{2}{{\rm \nabla} \tau_y^2 - {\rm
 
\nabla} \tau_x^2}} = \sqrt{\frac{2}{9 - 1}} \hspace{0.1cm}\rm MHz
 
\nabla} \tau_x^2}} = \sqrt{\frac{2}{9 - 1}} \hspace{0.1cm}\rm MHz
Line 121: Line 121:
  
 
'''(6)'''&nbsp; The condition&nbsp; σy=σx&nbsp; is equivalent to&nbsp; φy(τ=0)=φx(τ=0).  
 
'''(6)'''&nbsp; The condition&nbsp; σy=σx&nbsp; is equivalent to&nbsp; φy(τ=0)=φx(τ=0).  
*Moreover, since&nbsp; τy=3τx&nbsp; is given, therefore&nbsp; Φy(f=0)=3Φx(f=0)&nbsp; must also hold.
+
*Moreover,&nbsp; since&nbsp; τy=3τx&nbsp; is given,&nbsp; therefore&nbsp; Φy(f=0)=3Φx(f=0)&nbsp; must also hold.
 
*From this we obtain:
 
*From this we obtain:
 
:$$H_{\rm 0} = \sqrt{\frac{\it \Phi_y (f \rm = 0)}{\it \Phi_x (f = \rm 0)}} = \sqrt
 
:$$H_{\rm 0} = \sqrt{\frac{\it \Phi_y (f \rm = 0)}{\it \Phi_x (f = \rm 0)}} = \sqrt

Revision as of 18:43, 9 February 2022

Gaussian ACF at the filter input and output

At the input of a low-pass filter with frequency response  H(f),  there is a Gaussian distributed mean-free noise signal  x(t)  with the following auto-correlation function  (ACF):

φx(τ)=σ2xeπ(τ/τx)2.

This ACF is shown in the accompanying diagram above.

Let the filter be Gaussian with the DC gain  H0  and the equivalent bandwidth  Δf.  Thus,  for the frequency response,  it can be written:

H(f)=H0eπ(f/Δf)2.

In the course of this task,  the two filter parameters  H0  and  Δf  are to be dimensioned so that the output signal  y(t)  has an ACF corresponding to the diagram below.



Notes:

  • Consider the following Fourier correspondence:
eπ(f/Δf)2Δfeπ(Δft)2.


Questions

1

What is the rms value of the filter input signal?

σx = 

 V

2

From the sketched ACF,  also determine the equivalent ACF duration  τx  of the input signal.  How can this be determined in general?

τx = 

\ \rm µ s

3

What is the power-spectral density  {\it Φ}_x(f)  of the input signal?  What is the PSD value at  f= 0?

{\it Φ}_x(f=0) \ = \

\ \cdot 10^{-9}\ \rm V^2/Hz

4

Calculate the PSD  {\it Φ}_y(f)  at the filter output in general as a function of  \sigma_x\nabla \tau_xH_0  and  \Delta f.  Which statements are true?

The PSD  {\it Φ}_y(f)  is also Gaussian.
The smaller  \Delta f  is,  the wider  {\it Φ}_y(f).
H_0  only affects the height,  but not the width of  {\it Φ}_y(f).

5

How large must the equivalent filter bandwidth  \Delta f  be chosen so that  \nabla \tau_y = 3 \ \rm µ s  holds for the equivalent ACF duration?

\Delta f \ = \

\ \rm MHz

6

How large must one select the DC signal transfer factor  H_0  so that the condition  \sigma_y = \sigma_x  is fulfilled?

H_0 \ = \


Solution

(1)  The variance is equal to the ACF value at  \tau = 0,  so  \sigma_x^2 = 0.04 \ \rm V^2.

  • From this follows  \sigma_x\hspace{0.15cm}\underline {= 0.2 \ \rm V}.


(2)  The equivalent ACF duration can be determined via the rectangle of equal area.

  • According to the sketch,  we obtain  \nabla \tau_x\hspace{0.15cm}\underline {= 1 \ \rm µ s}.


(3)  The PSD is the Fourier transform of the ACF.

  • With the given Fourier correspondence holds:
{\it \Phi}_{x}(f) = \sigma_x^2 \cdot {\rm \nabla} \tau_x \cdot {\rm e}^{- \pi ({\rm \nabla} \tau_x \hspace{0.03cm}\cdot \hspace{0.03cm}f)^2} .
  • At frequency  f = 0,  we obtain:
{\it \Phi}_{x}(f = 0) = \sigma_x^2 \cdot {\rm \nabla} \tau_x = \rm 0.04 \hspace{0.1cm} V^2 \cdot 10^{-6} \hspace{0.1cm} s \hspace{0.15cm} \underline{= 40 \cdot 10^{-9} \hspace{0.1cm} V^2 / Hz}.


(4)  Solutions 1 and 3  are correct:

  • In general,  {\it \Phi}_{y}(f) = {\it \Phi}_{x}(f) \cdot |H(f)|^2.  It follows:
{\it \Phi}_{y}(f) = \sigma_x^2 \cdot {\rm \nabla} \tau_x \cdot {\rm e}^{- \pi ({\rm \nabla} \tau_x \cdot f)^2}\cdot H_{\rm 0}^2 \cdot{\rm e}^{- 2 \pi (f/ {\rm \Delta} f)^2} .
  • By combining the two exponential functions,  we obtain:
{\it \Phi}_{y}(f) = \sigma_x^2 \cdot {\rm \nabla} \tau_x \cdot H_0^2 \cdot {\rm e}^{- \pi\cdot ({\rm \nabla} \tau_x^2 + 2/\Delta f^2 ) \hspace{0.1cm}\cdot f^2}.
  • Also  {\it \Phi}_{y}(f)  is Gaussian and never wider than  {\it \Phi}_{x}(f).  For f \to \infty,  the approximation  {\it \Phi}_{y}(f) \approx {\it \Phi}_{x}(f)  holds.
  • As  \Delta f  gets smaller,  {\it \Phi}_{y}(f)  gets narrower  (so the second statement is false).
  • H_0  actually affects only the PSD height,  but not the width of the PSD.


(5)  Analogous to task  (1),  it can be written for the PSD of the output signal  y(t):

{\it \Phi}_{y}(f) = \sigma_y^2 \cdot {\rm \nabla} \tau_y \cdot {\rm e}^{- \pi \cdot {\rm \nabla} \tau_y^2 \cdot f^2 }.
  • By comparing with the result from  (4)  we get:
{{\rm \nabla} \tau_y^2} = {{\rm \nabla} \tau_x^2} + \frac {2}{{\rm \Delta} f^2}.
  • Solving the equation for  \Delta f  and considering the values  \nabla \tau_x {= 1 \ \rm µ s}  as well as  \nabla \tau_y {= 3 \ \rm µ s},  it follows:
{\rm \Delta} f = \sqrt{\frac{2}{{\rm \nabla} \tau_y^2 - {\rm \nabla} \tau_x^2}} = \sqrt{\frac{2}{9 - 1}} \hspace{0.1cm}\rm MHz \hspace{0.15cm} \underline{= 0.5\hspace{0.1cm} MHz} .


(6)  The condition  \sigma_y = \sigma_x  is equivalent to  \varphi_y(\tau = 0)= \varphi_x(\tau = 0).

  • Moreover,  since  \nabla \tau_y = 3 \cdot \nabla \tau_x  is given,  therefore  {\it \Phi}_{y}(f= 0) = 3 \cdot {\it \Phi}_{x}(f= 0)  must also hold.
  • From this we obtain:
H_{\rm 0} = \sqrt{\frac{\it \Phi_y (f \rm = 0)}{\it \Phi_x (f = \rm 0)}} = \sqrt {3}\hspace{0.15cm} \underline{=1.732}.