Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.2Z: Bit Error Measurement"

From LNTwww
Line 7: Line 7:
 
The bit error probability  
 
The bit error probability  
 
:pB=1/2erfc(EB/N0)  
 
:pB=1/2erfc(EB/N0)  
of a binary system was simulatively determined by a measurement of the bit error rate (BER)  
+
of a binary system was simulatively determined by a measurement of the bit error rate  $\rm (BER)$:
:hB=nB/N.
+
:$$h_{\rm B} = {n_{\rm B}}/{N}.$$
Often,  hB  is also called bit error frequency.
+
Often,  hB  is also called  "bit error frequency".
  
  
Line 22: Line 22:
  
 
The following properties are referred to in the exercise questionnaire:
 
The following properties are referred to in the exercise questionnaire:
*The bit error frequency  hB  is, to a first approximation, a Gaussian distributed random variable with mean  mh=pB  and variance  σ2hpB.
+
*The bit error frequency  hB  is  (to a first approximation)  a Gaussian distributed random variable with mean  mh=pB  and variance  $\sigma_h^2  \approx p_{\rm B}/N$.
 
*The relative deviation of the bit error frequency from the probability is
 
*The relative deviation of the bit error frequency from the probability is
 
:εrel=hBpBpB.
 
:εrel=hBpBpB.
  
*As a rough rule of thumb on the required accuracy, the number of measured bit errors should be  nB100.   
+
*As a rough rule of thumb on the required accuracy,  the number of measured bit errors should be  nB100.   
  
  
Line 33: Line 33:
  
  
''Note:''
+
Note:  
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|Error Probability for Baseband Transmission]].
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]].
 
   
 
   
  
Line 45: Line 45:
 
|type="[]"}
 
|type="[]"}
 
- The accuracy of the BER measurement is independent of  N.
 
- The accuracy of the BER measurement is independent of  N.
+ The larger  N  is, the more accurate the BER measurement is on average.
+
+ The larger  N  is,  the more accurate the BER measurement is on average.
- The larger  N  is, the more accurate each individual BER measurement is.
+
- The larger  N  is,  the more accurate each individual BER measurement is.
  
  
Line 61: Line 61:
  
  
{Give the standard deviation  σh  for different  N  Let 10lg EB/N0=9 dB.
+
{Give the standard deviation  σh  for different  N.  Let 10lg EB/N0=9 dB.
 
|type="{}"}
 
|type="{}"}
 
N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}  σ_h \ = \   { 2.3 3% }  \ \cdot 10^{ -5 }\
 
N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}  σ_h \ = \   { 2.3 3% }  \ \cdot 10^{ -5 }\
Line 73: Line 73:
  
  
{Up to what (logarithmic)  E_{\rm B}/N_0 value is  N = 1.6 \cdot 10^6  sufficient due to the condition  n_{\rm B} \ge 100?   
+
{Up to what (logarithmic)  E_{\rm B}/N_0  value is  N = 1.6 \cdot 10^6  sufficient due to the condition  n_{\rm B} \ge 100?   
 
|type="{}"}
 
|type="{}"}
 
\text{Maximum} \ \big [10 \cdot \lg \ E_{\rm B}/N_0 \big]  \ = \ { 8 3% }  \ \rm dB
 
\text{Maximum} \ \big [10 \cdot \lg \ E_{\rm B}/N_0 \big]  \ = \ { 8 3% }  \ \rm dB

Revision as of 14:56, 29 April 2022


Simulated bit error frequencies

The bit error probability

p_{\rm B} = {1}/{2} \cdot{\rm erfc} \left( \sqrt{{E_{\rm B}}/{N_0}}\right)

of a binary system was simulatively determined by a measurement of the bit error rate  \rm (BER):

h_{\rm B} = {n_{\rm B}}/{N}.

Often,  h_{\rm B}  is also called  "bit error frequency".


In above equations mean:

  • E_{\rm B}:   energy per bit,
  • N_0:   AWGN noise power density,
  • n_{\rm B}:   number of bit errors occurred,
  • N:     number of simulated bits of a test series.


The table shows the results of some test series with  N = 6.4 \cdot 10^4 ,  N = 1. 28 \cdot 10^5  and  N = 1.6 \cdot 10^6. The last column named  N \to \infty   gives the bit error probability  p_{\rm B}

The following properties are referred to in the exercise questionnaire:

  • The bit error frequency  h_{\rm B}  is  (to a first approximation)  a Gaussian distributed random variable with mean  m_h = p_{\rm B}  and variance  \sigma_h^2 \approx p_{\rm B}/N.
  • The relative deviation of the bit error frequency from the probability is
\varepsilon_{\rm rel}= \frac {h_{\rm B}-p_{\rm B}}{p_{\rm B}}\hspace{0.05cm}.
  • As a rough rule of thumb on the required accuracy,  the number of measured bit errors should be  n_{\rm B} \ge 100




Note:



Questions

1

Which of the following statements are true?

The accuracy of the BER measurement is independent of  N.
The larger  N  is,  the more accurate the BER measurement is on average.
The larger  N  is,  the more accurate each individual BER measurement is.

2

Give the standard deviation  \sigma_h  for different  N.  Let  10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB.

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} σ_h \ = \

\ \cdot 10^{ -3 }\
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} σ_h \ = \

\ \cdot 10^{ -3 }\

3

What is the respective relative deviation for  10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB?

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \

\ \%
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \

\ \%

4

Give the standard deviation  \sigma_h  for different  N.  Let 10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB.

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} σ_h \ = \

\ \cdot 10^{ -5 }\
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} σ_h \ = \

\ \cdot 10^{ -5 }\

5

What is the respective relative deviation for  10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB?

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \

\ \%
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \

\ \%

6

Up to what (logarithmic)  E_{\rm B}/N_0  value is  N = 1.6 \cdot 10^6  sufficient due to the condition  n_{\rm B} \ge 100

\text{Maximum} \ \big [10 \cdot \lg \ E_{\rm B}/N_0 \big] \ = \

\ \rm dB


Solution

(1)  Only the second solution is correct:

  • Of course, the accuracy of the BER measurement is influenced by the parameter N to a large extent. On statistical average, the BER measurement naturally becomes better when N is increased.
  • However, there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement, as shown, for example, by the results for 10 \cdot \lg \ E_{\rm B}/N_0 = 6 \ \rm dB:
  • For N = 6.4 \cdot 10^4\ (n_{\rm B} = 0.258 \cdot 10^{-2}), the deviation from the true value (0.239 \cdot 10^{-2}) is smaller than for N = 1.28 \cdot 10^5\ (n_{\rm B} = 0.272 \cdot 10^{-2}).


(2)  At 10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB, i.e. E_{\rm B} = N_0, the following values are obtained:

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1 \cdot10^{-3}}\hspace{0.05cm},
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{1600000}}\hspace{0.1cm}\underline {\approx 0.22 \cdot10^{-3}}\hspace{0.05cm}.


(3)  For this, 10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB yields the following values:

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}} = \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.0782-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.5\% } \hspace{0.05cm}.


(4)  Due to the smaller error probability, the values are now smaller than in subtask (2):

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx 2.3 \cdot 10^{-5}}\hspace{0.05cm},
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{1.6 \cdot 10^{6}}}\hspace{0.1cm}\underline {\approx 0.46 \cdot10^{-5}}\hspace{0.05cm}.


(5)  Despite the much smaller standard deviation \sigma_h, the smaller error probability results in larger relative deviations for 10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB than for 10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB:

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.625 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline { \approx 86\% } \hspace{0.05cm},
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.325 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline {\approx -3.3\%}\hspace{0.05cm}.


(6)  The number of measured bit errors should be n_{\rm B} \ge 100. Therefore, approximately (rounding errors should be taken into account):

n_{\rm B} = {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.
  • It further follows that in the simulation for 10 \cdot \lg \ E_{\rm B}/N_0\hspace{0.05cm}\underline{ = 8 \ \rm dB} still a sufficient number of bit errors occurred (n_{\rm B} =315), while for 10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB on average only n_{\rm B} =52 errors are to be expected.
  • For this dB value, about twice the number of bits would have to be simulated.