Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.3: System Comparison at AWGN Channel"

From LNTwww
m
m
Line 18: Line 18:
 
*System A  is characterized by the following equation:
 
*System A  is characterized by the following equation:
 
:y=x+1.
 
:y=x+1.
*Accordingly,  System B  is characterized by:
+
* System B  is instead characterized by:
 
:y=6(1ex+1).
 
:y=6(1ex+1).
 
The additional axis labels drawn in green have the following meaning:
 
The additional axis labels drawn in green have the following meaning:

Revision as of 18:53, 23 March 2022

System comparison at AWGN channel

For the comparison of different modulation and demodulation methods with regard to noise sensitivity,  we usually assume the so-called  AWGN channel  and present the following double logarithmic diagram:

  • The y-axis indicates the  "sink-to-noise ratio"  (logarithmic SNR)   ⇒   10 · \lg ρ_v  in dB.
  •  10 · \lg ξ  is plotted on the x-axis;  the normalized power parameter  ("performance parameter")  is characterized by:
\xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.
  • Thus,  the transmission power  P_{\rm S},  the channel attenuation factor α_{\rm K},  the noise power density  N_0  and the bandwidth  B_{\rm NF}  of the message signal are suitably summarised together in  ξ.
  • Unless explicitly stated otherwise,  the following values shall be assumed in the exercise:
P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.

Two systems are plotted in the graph and their   (x, y)-curve can be described as follows:

  • \text{System A}  is characterized by the following equation:
y = x+1.
  •  \text{System B}  is instead characterized by:
y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.

The additional axis labels drawn in green have the following meaning:

x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.
  • Thus  x = 4  represents  10 · \lg ξ = 40\text{ dB}  or  ξ = 10^4 
  • and  y = 5  represents  10 · \lg ρ_v= 50\text{ dB} , i.e.,  ρ_v = 10^5.





Hints:


Questions

1

What is the  sink signal-to-noise ratio  (in dB)  for  \text{System A}  with  P_{\rm S}= 5 \;{\rm kW},   \alpha_{\rm K} = 0.001,   N_0 = 10^{-10}\;{\rm W}/{\rm Hz},   B_{\rm NF}= 5\; {\rm kHz}?

10 · \lg \hspace{0.05cm}ρ_v \ = \

\ \text{dB}

2

Now  10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}  is required.  Which independent measures can be taken to achieve this?

Increasing the transmission power from  P_{\rm S}= 5\text{ kW}  to 10\text{ kW} .
Increasing the channel transmission factor from  α_{\rm K} = 0.001  to  0.004.
Reducing the noise power density to  N_0=10^{–11 }\text{ W/Hz}.
Increasing the source signal bandwidth from  B_{\rm NF}= 5\text{ kHz}  to  10\text{ kHz}.

3

What is the sink signal-to-noise ratio for  \text{System B}  with  10 · \lg ξ = 40\text{ dB}?

10 · \lg \hspace{0.05cm}ρ_v \ = \

\ \text{dB}

4

If the required sink signal-to-noise ratio is  10 · \lg ρ_v = 50\text{ dB},  what transmission power  P_{\rm S} is sufficient to achieve this for  \text{System B}?

P_{\rm S} \ = \

\ \text{ kW }

5

What value of  10 · \lg ξ  gives the greatest improvement of  \text{System B}  relative to  \text{System A} ?

10 · \lg \hspace{0.05cm} ξ \ = \

\ \text{dB}


Solution

(1)  The normalized performance parameter is calculated using these values as follows:

\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.
  • This gives the auxiliary coordinate value  y = 5,  which leads to a sink SNR of   10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}.


(2) Answers 2 and 3  are correct:

This requirement corresponds to a  10  dB  increase in the sink SNR compared to the previous system,  so  10 · \lg \hspace{0.05cm}ξ  must also be increased by 10  dB:

10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.

A tenfold larger  ξ  value is achieved  (provided all other parameters are held constant in each case)

  • by a transmission power of  P_{\rm S} = 50  kW  instead of   5  kW,
  • by a channel transmission factor of   α_{\rm K} = 0.00316  instead of  0.001,
  • by a noise power density of   N_0 = 10^{ –11 }  W/Hz  instead of  10^{ –10 }  W/Hz,
  • by a signal bandwidth of  B_{\rm NF} = 0.5  kHz  instead of   5  kHz.


(3)  For  10 · \lg \hspace{0.05cm} ξ = 40  dB,  the auxiliary value is   x = 4.  This gives the auxiliary  y–value:

y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.
  • This corresponds to a sink SNR of   10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB}   ⇒   7  dB improvement over  \text{System A}.


(4)  This problem is described by the following equation:

y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.
  • For  \text{System A}  10 · \lg \hspace{0.05cm} \xi = 40  dB is required,  which was achieved with   P_{\rm S} = 5  kW and the other numerical values given. 
  • Now the transmission power can be reduced by about   12.1  dB:
10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.
  • This means that in  \text{System B}  the same system quality is achieved with only   6\%  of the transmission power of  \text{System A}  – i.e., with only   P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}.


(5)  The larger sink SNR of  \text{System B}  compared to  \text{System A}  we will denote with   V  (from German  "Verbesserung"   ⇒   "improvement"):

V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.
  • Setting the derivative to zero yields the  x–value that leads to the maximum improvement:
\frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.
  • This results in exactly the case discussed in subtask   (4)  with   10 · \lg ρ_υ = 50  dB,  while the sink SNR for  \text{System A}  is only  37.9  dB. 
  • The improvement is therefore  12.1  dB.