Processing math: 100%

Difference between revisions of "Aufgaben:Exercise 1.3: System Comparison at AWGN Channel"

From LNTwww
m
m
 
Line 63: Line 63:
 
PS =  { 0.3 3% }   kW 
 
PS =  { 0.3 3% }   kW 
  
{What value of  10·lgξ  gives the greatest improvement of  System B  relative to  System A ?
+
{What value of  10·lgξ  gives the greatest improvement for  System B  relative to  System A ?
 
|type="{}"}
 
|type="{}"}
 
10·lgξ = { 27.9 3% }  dB
 
10·lgξ = { 27.9 3% }  dB

Latest revision as of 18:54, 23 March 2022

System comparison at AWGN channel

For the comparison of different modulation and demodulation methods with regard to noise sensitivity,  we usually assume the so-called  AWGN channel  and present the following double logarithmic diagram:

  • The y-axis indicates the  "sink-to-noise ratio"  (logarithmic SNR)   ⇒   10·lgρv  in dB.
  •  10·lgξ  is plotted on the x-axis;  the normalized power parameter  ("performance parameter")  is characterized by:
ξ=PSα2KN0BNF.
  • Thus,  the transmission power  PS,  the channel attenuation factor αK,  the noise power density  N0  and the bandwidth  BNF  of the message signal are suitably summarised together in  ξ.
  • Unless explicitly stated otherwise,  the following values shall be assumed in the exercise:
PS=5kW,αK=0.001,N0=1010W/Hz,BNF=5kHz.

Two systems are plotted in the graph and their   (x,y)-curve can be described as follows:

  • System A  is characterized by the following equation:
y=x+1.
  •  System B  is instead characterized by:
y=6(1ex+1).

The additional axis labels drawn in green have the following meaning:

x=10lgξ10dB,y=10lgρv10dB.
  • Thus  x=4  represents  10·lgξ=40 dB  or  ξ=104 
  • and  y=5  represents  10·lgρv=50 dB , i.e.,  ρv=105.





Hints:


Questions

1

What is the  sink signal-to-noise ratio  (in dB)  for  System A  with  PS=5kW,   αK=0.001,   N0=1010W/Hz,   BNF=5kHz?

10·lgρv = 

 dB

2

Now  10·lgρv60 dB  is required.  Which independent measures can be taken to achieve this?

Increasing the transmission power from  PS=5 kW  to 10 kW .
Increasing the channel transmission factor from  αK=0.001  to  0.004.
Reducing the noise power density to  N0=1011 W/Hz.
Increasing the source signal bandwidth from  BNF=5 kHz  to  10 kHz.

3

What is the sink signal-to-noise ratio for  System B  with  10·lgξ=40 dB?

10·lgρv = 

 dB

4

If the required sink signal-to-noise ratio is  10·lgρv=50 dB,  what transmission power  PS is sufficient to achieve this for  System B?

PS = 

  kW 

5

What value of  10·lgξ  gives the greatest improvement for  System B  relative to  System A ?

10·lgξ = 

 dB


Solution

(1)  The normalized performance parameter is calculated using these values as follows:

ξ=5103W1061010W/Hz5103Hz=10410lgξ=40dBx=4.
  • This gives the auxiliary coordinate value  y=5,  which leads to a sink SNR of   10·lgρv=50 dB_.


(2) Answers 2 and 3  are correct:

This requirement corresponds to a  10  dB  increase in the sink SNR compared to the previous system,  so  10·lgξ  must also be increased by 10  dB:

10lgξ=50dBξ=105.

A tenfold larger  ξ  value is achieved  (provided all other parameters are held constant in each case)

  • by a transmission power of  PS=50  kW  instead of   5  kW,
  • by a channel transmission factor of   αK=0.00316  instead of  0.001,
  • by a noise power density of   N0=1011  W/Hz  instead of  1010  W/Hz,
  • by a signal bandwidth of  BNF=0.5  kHz  instead of   5  kHz.


(3)  For  10·lgξ=40  dB,  the auxiliary value is   x=4.  This gives the auxiliary  y–value:

y=6(1e3)5.7.
  • This corresponds to a sink SNR of   10·lgρv=57 dB_   ⇒   7  dB improvement over  System A.


(4)  This problem is described by the following equation:

y=6(1ex+1)=5ex+1=1/6x=1+ln62.7910lgξ=27.9dB.
  • For  System A  10·lgξ=40  dB is required,  which was achieved with   PS=5  kW and the other numerical values given. 
  • Now the transmission power can be reduced by about   12.1  dB:
10lgPS5kW=12.1dBPS5kW=101.210.06.
  • This means that in  System B  the same system quality is achieved with only   6%  of the transmission power of  System A  – i.e., with only   PS=0.3 kW_.


(5)  The larger sink SNR of  System B  compared to  System A  we will denote with   V  (from German  "Verbesserung"   ⇒   "improvement"):

V=10lgρv(SystemB)10lgρv(SystemA)=[6(1ex+1)x1]10dB.
  • Setting the derivative to zero yields the  x–value that leads to the maximum improvement:
dVdx=6ex+11x=1+ln610lgξ=27.9dB_.
  • This results in exactly the case discussed in subtask   (4)  with   10·lgρυ=50  dB,  while the sink SNR for  System A  is only  37.9  dB. 
  • The improvement is therefore  12.1  dB.