Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.2Z: Bit Error Measurement"

From LNTwww
Line 83: Line 83:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Only the <u>second solution</u> is correct:  
+
'''(1)'''&nbsp; Only the&nbsp; <u>second solution</u>&nbsp; is correct:  
*Of course, the accuracy of the BER measurement is influenced by the parameter N to a large extent. On statistical average, the BER measurement naturally becomes better when N is increased.  
+
*Of course,&nbsp; the accuracy of the BER measurement is influenced by the parameter&nbsp; N&nbsp; to a large extent.&nbsp; On statistical average,&nbsp; the BER measurement naturally becomes better when&nbsp; N&nbsp; is increased.  
*However, there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement, as shown, for example, by the results for 10lg EB/N0=6 dB:  
+
*However,&nbsp; there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement,&nbsp; as shown,&nbsp; for example,&nbsp; by the results for&nbsp; 10lg EB/N0=6 dB:  
*For $N = 6.4 \cdot 10^4\  (n_{\rm B} = 0.258 \cdot 10^{-2}),thedeviationfromthetruevalue(0.239 \cdot 10^{-2})issmallerthanforN = 1.28 \cdot 10^5\  (n_{\rm B} = 0.272 \cdot 10^{-2})$.  
+
*For&nbsp; $N = 6.4 \cdot 10^4\  (h_{\rm B} = 0.258 \cdot 10^{-2})$,&nbsp; the deviation from the true value&nbsp; (0.239102)&nbsp; is smaller than for&nbsp; $N = 1.28 \cdot 10^5\  (h_{\rm B} = 0.272 \cdot 10^{-2})$.  
  
  
  
'''(2)'''&nbsp; At 10lg EB/N0=0 dB, i.e. EB=N0, the following values are obtained:
+
'''(2)'''&nbsp; At&nbsp; 10lg EB/N0=0 dB,&nbsp; i.e.&nbsp; EB=N0,&nbsp; the following values are obtained:
 
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1
 
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1
 
   \cdot10^{-3}}\hspace{0.05cm},$$
 
   \cdot10^{-3}}\hspace{0.05cm},$$
Line 97: Line 97:
  
  
'''(3)'''&nbsp; For this, 10lg EB/N0=0 dB yields the following values:
+
'''(3)'''&nbsp; For this,&nbsp; 10lg EB/N0=0 dB&nbsp; yields the following values:
 
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}-  p_{\rm B}}{h_{\rm B}}
 
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}-  p_{\rm B}}{h_{\rm B}}
 
= \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}$$
 
= \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}$$
Line 103: Line 103:
  
  
'''(4)'''&nbsp; Due to the smaller error probability, the values are now smaller than in subtask (2):
+
'''(4)'''&nbsp; Due to the smaller error probability,&nbsp; the values are now smaller than in subtask&nbsp; '''(2)''':
 
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx
 
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx
 
   2.3 \cdot 10^{-5}}\hspace{0.05cm},$$
 
   2.3 \cdot 10^{-5}}\hspace{0.05cm},$$
Line 109: Line 109:
  
  
'''(5)'''&nbsp; Despite the much smaller standard deviation σh, the smaller error probability results in larger relative deviations for 10lg EB/N0=9 dB than for 10lg EB/N0=0 dB:
+
'''(5)'''&nbsp; Despite the much smaller standard deviation&nbsp; σh,&nbsp; the smaller error probability results in larger relative deviations for&nbsp; 10lg EB/N0=9 dB&nbsp; <br> &nbsp; &nbsp; &nbsp; &nbsp; than for&nbsp; 10lg EB/N0=0 dB:
 
:N=6.4104:εrel=hBpBhB=0.6251040.3361040.33610486%_,
 
:N=6.4104:εrel=hBpBhB=0.6251040.3361040.33610486%_,
 
:N=1.6106:εrel=hBpBhB=0.3251040.3361040.3361043.3%_.
 
:N=1.6106:εrel=hBpBhB=0.3251040.3361040.3361043.3%_.
  
  
'''(6)'''&nbsp; The number of measured bit errors should be nB100. Therefore, approximately (rounding errors should be taken into account):
+
'''(6)'''&nbsp; The number of measured bit errors should be&nbsp; nB100.&nbsp; Therefore, approximately (rounding errors should be taken into account):
 
:$$n_{\rm B} =  {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$n_{\rm B} =  {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.$$
 
p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.$$

Revision as of 15:37, 29 April 2022


Simulated bit error frequencies

The bit error probability

pB=1/2erfc(EB/N0)

of a binary system was simulatively determined by a measurement of the bit error rate  (BER):

hB=nB/N.

Often,  hB  is also called  "bit error frequency".


In above equations mean:

  • EB:   energy per bit,
  • N0:   AWGN noise power density,
  • nB:   number of bit errors occurred,
  • N:     number of simulated bits of a test series.


The table shows the results of some test series with  N=6.4104,  N=1.28105  and  N=1.6106. The last column named  N  gives the bit error probability  pB

The following properties are referred to in the exercise questionnaire:

  • The bit error frequency  hB  is  (to a first approximation)  a Gaussian distributed random variable with mean  mh=pB  and variance  σ2hpB/N.
  • The relative deviation of the bit error frequency from the probability is
εrel=hBpBpB.
  • As a rough rule of thumb on the required accuracy,  the number of measured bit errors should be  nB100




Note:



Questions

1

Which of the following statements are true?

The accuracy of the BER measurement is independent of  N.
The larger  N  is,  the more accurate the BER measurement is on average.
The larger  N  is,  the more accurate each individual BER measurement is.

2

Give the standard deviation  σh  for different  N.  Let  10lg EB/N0=0 dB.

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} σ_h \ = \

\ \cdot 10^{ -3 }\
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} σ_h \ = \

\ \cdot 10^{ -3 }\

3

What is the respective relative deviation for  10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB?

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \

\ \%
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \

\ \%

4

Give the standard deviation  \sigma_h  for different  N.  Let 10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB.

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} σ_h \ = \

\ \cdot 10^{ -5 }\
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} σ_h \ = \

\ \cdot 10^{ -5 }\

5

What is the respective relative deviation for  10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB?

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \

\ \%
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \

\ \%

6

Up to what (logarithmic)  E_{\rm B}/N_0  value is  N = 1.6 \cdot 10^6  sufficient due to the condition  n_{\rm B} \ge 100

\text{Maximum} \ \big [10 \cdot \lg \ E_{\rm B}/N_0 \big] \ = \

\ \rm dB


Solution

(1)  Only the  second solution  is correct:

  • Of course,  the accuracy of the BER measurement is influenced by the parameter  N  to a large extent.  On statistical average,  the BER measurement naturally becomes better when  N  is increased.
  • However,  there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement,  as shown,  for example,  by the results for  10 \cdot \lg \ E_{\rm B}/N_0 = 6 \ \rm dB:
  • For  N = 6.4 \cdot 10^4\ (h_{\rm B} = 0.258 \cdot 10^{-2}),  the deviation from the true value  (0.239 \cdot 10^{-2})  is smaller than for  N = 1.28 \cdot 10^5\ (h_{\rm B} = 0.272 \cdot 10^{-2}).


(2)  At  10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB,  i.e.  E_{\rm B} = N_0,  the following values are obtained:

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1 \cdot10^{-3}}\hspace{0.05cm},
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{1600000}}\hspace{0.1cm}\underline {\approx 0.22 \cdot10^{-3}}\hspace{0.05cm}.


(3)  For this,  10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB  yields the following values:

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}} = \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.0782-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.5\% } \hspace{0.05cm}.


(4)  Due to the smaller error probability,  the values are now smaller than in subtask  (2):

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx 2.3 \cdot 10^{-5}}\hspace{0.05cm},
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{1.6 \cdot 10^{6}}}\hspace{0.1cm}\underline {\approx 0.46 \cdot10^{-5}}\hspace{0.05cm}.


(5)  Despite the much smaller standard deviation  \sigma_h,  the smaller error probability results in larger relative deviations for  10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB 
        than for  10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB:

N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.625 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline { \approx 86\% } \hspace{0.05cm},
N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.325 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline {\approx -3.3\%}\hspace{0.05cm}.


(6)  The number of measured bit errors should be  n_{\rm B} \ge 100.  Therefore, approximately (rounding errors should be taken into account):

n_{\rm B} = {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.
  • It further follows that in the simulation for 10 \cdot \lg \ E_{\rm B}/N_0\hspace{0.05cm}\underline{ = 8 \ \rm dB} still a sufficient number of bit errors occurred (n_{\rm B} =315), while for 10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB on average only n_{\rm B} =52 errors are to be expected.
  • For this dB value, about twice the number of bits would have to be simulated.