Difference between revisions of "Aufgaben:Exercise 1.2Z: Bit Error Measurement"
Line 83: | Line 83: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Only the <u>second solution</u> is correct: | + | '''(1)''' Only the <u>second solution</u> is correct: |
− | *Of course, the accuracy of the BER measurement is influenced by the parameter N to a large extent. On statistical average, the BER measurement naturally becomes better when N is increased. | + | *Of course, the accuracy of the BER measurement is influenced by the parameter N to a large extent. On statistical average, the BER measurement naturally becomes better when N is increased. |
− | *However, there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement, as shown, for example, by the results for 10⋅lg EB/N0=6 dB: | + | *However, there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement, as shown, for example, by the results for 10⋅lg EB/N0=6 dB: |
− | *For $N = 6.4 \cdot 10^4\ ( | + | *For $N = 6.4 \cdot 10^4\ (h_{\rm B} = 0.258 \cdot 10^{-2})$, the deviation from the true value (0.239⋅10−2) is smaller than for $N = 1.28 \cdot 10^5\ (h_{\rm B} = 0.272 \cdot 10^{-2})$. |
− | '''(2)''' At 10⋅lg EB/N0=0 dB, i.e. EB=N0, the following values are obtained: | + | '''(2)''' At 10⋅lg EB/N0=0 dB, i.e. EB=N0, the following values are obtained: |
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1 | :$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1 | ||
\cdot10^{-3}}\hspace{0.05cm},$$ | \cdot10^{-3}}\hspace{0.05cm},$$ | ||
Line 97: | Line 97: | ||
− | '''(3)''' For this, 10⋅lg EB/N0=0 dB yields the following values: | + | '''(3)''' For this, 10⋅lg EB/N0=0 dB yields the following values: |
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}} | :$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}} | ||
= \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}$$ | = \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}$$ | ||
Line 103: | Line 103: | ||
− | '''(4)''' Due to the smaller error probability, the values are now smaller than in subtask (2): | + | '''(4)''' Due to the smaller error probability, the values are now smaller than in subtask '''(2)''': |
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx | :$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx | ||
2.3 \cdot 10^{-5}}\hspace{0.05cm},$$ | 2.3 \cdot 10^{-5}}\hspace{0.05cm},$$ | ||
Line 109: | Line 109: | ||
− | '''(5)''' Despite the much smaller standard deviation σh, the smaller error probability results in larger relative deviations for 10⋅lg EB/N0=9 dB than for 10⋅lg EB/N0=0 dB: | + | '''(5)''' Despite the much smaller standard deviation σh, the smaller error probability results in larger relative deviations for 10⋅lg EB/N0=9 dB <br> than for 10⋅lg EB/N0=0 dB: |
:N=6.4⋅104:εrel=hB−pBhB=0.625⋅10−4−0.336⋅10−40.336⋅10−4≈86%_, | :N=6.4⋅104:εrel=hB−pBhB=0.625⋅10−4−0.336⋅10−40.336⋅10−4≈86%_, | ||
:N=1.6⋅106:εrel=hB−pBhB=0.325⋅10−4−0.336⋅10−40.336⋅10−4≈−3.3%_. | :N=1.6⋅106:εrel=hB−pBhB=0.325⋅10−4−0.336⋅10−40.336⋅10−4≈−3.3%_. | ||
− | '''(6)''' The number of measured bit errors should be nB≥100. Therefore, approximately (rounding errors should be taken into account): | + | '''(6)''' The number of measured bit errors should be nB≥100. Therefore, approximately (rounding errors should be taken into account): |
:$$n_{\rm B} = {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$$n_{\rm B} = {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.$$ | p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.$$ |
Revision as of 15:37, 29 April 2022
The bit error probability
- pB=1/2⋅erfc(√EB/N0)
of a binary system was simulatively determined by a measurement of the bit error rate (BER):
- hB=nB/N.
Often, hB is also called "bit error frequency".
In above equations mean:
- EB: energy per bit,
- N0: AWGN noise power density,
- nB: number of bit errors occurred,
- N: number of simulated bits of a test series.
The table shows the results of some test series with N=6.4⋅104, N=1.28⋅105 and N=1.6⋅106. The last column named N→∞ gives the bit error probability pB.
The following properties are referred to in the exercise questionnaire:
- The bit error frequency hB is (to a first approximation) a Gaussian distributed random variable with mean mh=pB and variance σ2h≈pB/N.
- The relative deviation of the bit error frequency from the probability is
- εrel=hB−pBpB.
- As a rough rule of thumb on the required accuracy, the number of measured bit errors should be nB≥100.
Note:
- The exercise belongs to the chapter "Error Probability for Baseband Transmission".
Questions
Solution
- Of course, the accuracy of the BER measurement is influenced by the parameter N to a large extent. On statistical average, the BER measurement naturally becomes better when N is increased.
- However, there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement, as shown, for example, by the results for 10 \cdot \lg \ E_{\rm B}/N_0 = 6 \ \rm dB:
- For N = 6.4 \cdot 10^4\ (h_{\rm B} = 0.258 \cdot 10^{-2}), the deviation from the true value (0.239 \cdot 10^{-2}) is smaller than for N = 1.28 \cdot 10^5\ (h_{\rm B} = 0.272 \cdot 10^{-2}).
(2) At 10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB, i.e. E_{\rm B} = N_0, the following values are obtained:
- N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1 \cdot10^{-3}}\hspace{0.05cm},
- N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{1600000}}\hspace{0.1cm}\underline {\approx 0.22 \cdot10^{-3}}\hspace{0.05cm}.
(3) For this, 10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB yields the following values:
- N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}} = \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}
- N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.0782-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.5\% } \hspace{0.05cm}.
(4) Due to the smaller error probability, the values are now smaller than in subtask (2):
- N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx 2.3 \cdot 10^{-5}}\hspace{0.05cm},
- N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{1.6 \cdot 10^{6}}}\hspace{0.1cm}\underline {\approx 0.46 \cdot10^{-5}}\hspace{0.05cm}.
(5) Despite the much smaller standard deviation \sigma_h, the smaller error probability results in larger relative deviations for 10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB
than for 10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB:
- N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.625 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline { \approx 86\% } \hspace{0.05cm},
- N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.325 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline {\approx -3.3\%}\hspace{0.05cm}.
(6) The number of measured bit errors should be n_{\rm B} \ge 100. Therefore, approximately (rounding errors should be taken into account):
- n_{\rm B} = {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.
- It further follows that in the simulation for 10 \cdot \lg \ E_{\rm B}/N_0\hspace{0.05cm}\underline{ = 8 \ \rm dB} still a sufficient number of bit errors occurred (n_{\rm B} =315), while for 10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB on average only n_{\rm B} =52 errors are to be expected.
- For this dB value, about twice the number of bits would have to be simulated.