Difference between revisions of "Channel Coding/Distance Characteristics and Error Probability Bounds"

From LNTwww
Line 16: Line 16:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Der zweite Gleichungsteil ergibt sich aus der Tatsache, dass jeder lineare Code auch das Nullwort&nbsp; $(\underline{0})$&nbsp; beinhaltet. Zweckmäßigerweise setzt man deshalb&nbsp; $\underline{x}\hspace{0.05cm}' = \underline{0}$, so dass die&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| "Hamming&ndash;Distanz"]]&nbsp; $d_{\rm H}(\underline{x}, \ \underline{0})$&nbsp; das gleiche Ergebnis liefert wie das Hamming&ndash;Gewicht&nbsp; $w_{\rm H}(\underline{x})$.<br>
+
The second part of the equation arises from the fact that every linear code also includes the zero word&nbsp; $(\underline{0})$&nbsp;. It is therefore convenient to set&nbsp; $\underline{x}\hspace{0.05cm}' = \underline{0}$, so that the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| "Hamming distance"]]&nbsp; $d_{\rm H}(\underline{x}, \ \underline{0})$&nbsp; gives the same result as Hamming weight&nbsp; $w_{\rm H}(\underline{x})$.<br>
  
[[File:P ID2684 KC T 3 5 S1 neu.png|right|frame| Codewort des&nbsp; $(7, 4, 3)$–Hamming–Codes|class=fit]]
+
[[File:P ID2684 KC T 3 5 S1 neu.png|right|frame| Code word of the&nbsp; $(7, 4, 3)$ Hamming code|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Die Tabelle zeigt die 16 Codeworte des&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes| "$(7, 4, 3)$&ndash;Hamming&ndash;Codes"]]&nbsp; <br>$($siehe &nbsp;$\text{Beispiel 7})$.<br>
+
$\text{Example 1:}$&nbsp; The table shows the 16 codewords of the&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|"$(7, 4, 3)$&ndash;Hamming codes"]]&nbsp; <br>$($see &nbsp;$\text{Example 7})$.<br>
*Alle Codeworte außer dem Nullwort&nbsp; $(\underline{0})$&nbsp; beinhalten mindestens drei Einsen &nbsp; &#8658; &nbsp; $d_{\rm min} = 3$.  
+
*All codewords except the null word&nbsp; $(\underline{0})$&nbsp; contain at least three ones &nbsp; &#8658; &nbsp; $d_{\rm min} = 3$.  
*Es gibt sieben Codeworte mit drei Einsen (gelb hinterlegt), sieben mit vier Einsen (grün hinterlegt) und je eines ohne Einsen bzw. mit sieben Einsen.}}
+
*There are seven codewords with three ones (highlighted in yellow), seven with four ones (highlighted in green), and one each with no ones and seven ones}}.
 
<br clear=all>
 
<br clear=all>
  
Die&nbsp; <b>freie Distanz</b>&nbsp; $d_{\rm F}$&nbsp; eines Faltungscodes (<i>Convolution Code</i> &nbsp; &#8658; &nbsp; $\mathcal{CC}$) unterscheidet sich formelmäßig nicht von der minimalen Distanz eines linearen Blockcodes:
+
The&nbsp; <b>free distance</b>&nbsp; $d_{\rm F}$&nbsp; of a (<i>convolutional code</i> &nbsp; &#8658; &nbsp; $\mathcal{CC}$) is formulaically no different from the minimum distance of a linear block code:
  
 
::<math>d_{\rm F}(\mathcal{CC}) =
 
::<math>d_{\rm F}(\mathcal{CC}) =
Line 33: Line 33:
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
In der Literatur wird anstelle von&nbsp; $d_{\rm F}$&nbsp; teilweise auch&nbsp; $d_{&#8734;}$&nbsp; verwendet.
+
In the literature instead of&nbsp; $d_{\rm F}$&nbsp; sometimes also&nbsp; $d_{&#8734;}$&nbsp; is used.
*Wesentlicher Unterschied zur minimalen Distanz ist, dass bei Faltungscodes nicht Informations&ndash; und Codeworte zu betrachten sind, sondern Sequenzen mit der Eigenschaft&nbsp; [[Channel_Coding/Basics_of_Convolutional_Coding#Requirements_and_definitions| "semi&ndash;infinite"]].<br>
+
*Major difference to minimal distance is that in convolutional codes not information&ndash; and codewords are to be considered, but sequences with the property&nbsp; [[Channel_Coding/Basics_of_Convolutional_Coding#Requirements_and_definitions| "semi&ndash;infinite"]].<br>
  
*Jede Codesequenz&nbsp; $\underline{x}$&nbsp; beschreibt einen Pfad durch das Trellis.  
+
*Each code sequence&nbsp; $\underline{x}$&nbsp; describes a path through the trellis.  
*Die freie Distanz ist dabei das kleinstmögliche Hamming&ndash;Gewicht eines solchen Pfades (mit Ausnahme des Nullpfades).<br>
+
*The free distance is the smallest possible Hamming weight of such a path (except for the zero path).<br>
  
  
Die Grafik zeigt drei der unendlich vielen Pfade mit dem minimalen Hamming&ndash;Gewicht&nbsp; $w_{\rm H, \ min}(\underline{x}) = d_{\rm F} = 5$.<br>
+
The graph shows three of the infinite paths with the minimum Hamming weight&nbsp; $w_{\rm H, \ min}(\underline{x}) = d_{\rm F} = 5$.<br>
  
 
[[File:P ID2685 KC T 3 5 S1c v1.png|center|frame| Einige Pfade mit&nbsp; $w(\underline{x}) = d_{\rm F} = 5$|class=fit]]
 
[[File:P ID2685 KC T 3 5 S1c v1.png|center|frame| Einige Pfade mit&nbsp; $w(\underline{x}) = d_{\rm F} = 5$|class=fit]]
  
== Pfadgewichtsfunktion==
+
== Path weighting function==
 
<br>
 
<br>
Für jeden linearen Blockcode lässt sich wegen der endlichen Anzahl an Codeworten&nbsp; $\underline{x}$&nbsp; in einfacher Weise eine Gewichtsfunktion angeben. Für das&nbsp; [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Freie_Distanz_vs._Minimale_Distanz|$\text{Beispiel 1}$]]&nbsp; auf der letzten Seite lautet diese:
+
For any linear block code, a weight enumerator function can be given in a simple way because of the finite number of codewords&nbsp; $\underline{x}$&nbsp;. For the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Free_distance_vs._minimum_distance|$\text{"Example 1"}$]]&nbsp; on the previous page this is:
  
 
::<math>W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.05cm}.</math>
 
::<math>W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.05cm}.</math>
  
Bei einem (nicht terminierten) Faltungscode kann keine solche Gewichtsfunktion angegegeben werden, da es unendlich viele, unendlich lange Codesequenzen&nbsp; $\underline{x}$&nbsp; gibt, und damit auch unendlich viele Trellispfade. Um dieses Problem in den Griff zu bekommen, gehen wir nun von folgenden Voraussetzungen aus:
+
In the case of a (non-terminated) convolutional code, no such weight function can be given, since there are infinitely many, infinitely long code sequences&nbsp; $\underline{x}$&nbsp; and thus also infinitely many trellis paths. To get a grip on this problem, we now assume the following:
*Als Bezugsgröße für das Trellisdiagramm wählen wir stets den Pfad der Codesequenz&nbsp; $\underline{x} = \underline{0}$&nbsp; und nennen diesen den <i>Nullpfad</i>&nbsp; $\varphi_0$.<br>
+
*As a reference for the trellis diagram, we always choose the path of the code sequence&nbsp; $\underline{x} = \underline{0}$&nbsp; and call this the <i>zero path</i>&nbsp; $\varphi_0$.<br>
  
*Wir betrachten nur noch solche Pfade&nbsp; $\varphi_j &#8712; {\it \Phi}$, die alle zu einer vorgegebenen Zeit&nbsp; $t$&nbsp; vom Nullpfad abweichen und irgendwann wieder zu diesem zurückkehren.<br><br>
+
*We now consider only those paths&nbsp; $\varphi_j &#8712; {\it \Phi}$ that all deviate from the zero path at a given time&nbsp; $t$&nbsp; and return to it at some point.<br><br>
  
Obwohl nur ein Bruchteil aller Pfade zur Menge&nbsp; ${\it \Phi}$&nbsp; gehören, beinhaltet&nbsp; ${\it \Phi} = \{\varphi_1, \ \varphi_2, \ \varphi_3, \ \text{...} \}$&nbsp; noch immer eine unbegrenzte Menge an Pfaden. $\varphi_0$&nbsp; gehört nicht dazu.<br>
+
Although only a fraction of all paths belong to the set&nbsp; ${\it \Phi}$&nbsp; , ${\it \Phi} = \{\varphi_1, \ \varphi_2, \ \varphi_3, \ \text{...} \}$&nbsp; still an unbounded set of paths. $\varphi_0$&nbsp; is not one of them.<br>
  
[[File:P ID2686 KC T 3 5 S2a v1.png|center|frame|Einige Pfade und ihre Pfadgewichte|class=fit]]
+
[[File:P ID2686 KC T 3 5 S2a v1.png|center|frame|Some paths and their path weightings|class=fit]]
  
Im obigen Trellis sind einige Pfade&nbsp; $\varphi_j &#8712; {\it \Phi}$&nbsp; eingezeichnet:
+
In the above trellis some paths&nbsp; $\varphi_j &#8712; {\it \Phi}$&nbsp; are drawn:
*Der gelbe Pfad&nbsp; $\varphi_1$&nbsp; gehört zur Sequenz&nbsp; $\underline{x}_1 = (11, 10, 11)$&nbsp; mit dem Hamming&ndash;Gewicht&nbsp; $w_{\rm H}(\underline{x}_1) = 5$. Damit ist auch das  Pfadgewicht&nbsp; $w(\varphi_1) = 5$. Aufgrund der Festlegung des Abzweigzeitpunktes&nbsp; $t$&nbsp; hat nur noch dieser einzige Pfad&nbsp; $\varphi_1$&nbsp; die freie Distanz&nbsp; $d_{\rm F} = 5$&nbsp; zum Nullpfad &nbsp; &#8658; &nbsp; $A_5 = 1$.<br>
+
*The yellow path&nbsp; $\varphi_1$&nbsp; belongs to the sequence&nbsp; $\underline{x}_1 = (11, 10, 11)$&nbsp; with hamming&ndash;weight&nbsp; $w_{\rm H}(\underline{x}_1) = 5$. Thus, the path weighting&nbsp; $w(\varphi_1) = 5$ as well. Due to the definition of the branching time&nbsp; $t$&nbsp; only this single path&nbsp; $\varphi_1$&nbsp; has the free distance&nbsp; $d_{\rm F} = 5$&nbsp; to the zero path &nbsp; &#8658; &nbsp; $A_5 = 1$.<br>
  
*Für die beiden grünen Pfade  mit den korrespondierenden Sequenzen&nbsp; $\underline{x}_2 = (11, 01, 01, 11)$&nbsp; bzw.&nbsp; $\underline{x}_3 = (11, 10, 00, 10, 11)$&nbsp; gilt&nbsp; $w(\varphi_2) = w(\varphi_3) = 6$. Kein anderer Pfad weist das Pfadgewicht&nbsp; $6$&nbsp; auf. Wir berücksichtigen diese Tatsache  durch den Koeffizienten&nbsp; $A_6 = 2$.<br>
+
*For the two green paths with corresponding sequences&nbsp; $\underline{x}_2 = (11, 01, 01, 11)$&nbsp; and &nbsp; $\underline{x}_3 = (11, 10, 00, 10, 11)$&nbsp; respectively,&nbsp; $w(\varphi_2) = w(\varphi_3) = 6$ holds. No other path exhibits the path weighting&nbsp; $6$&nbsp;. We take this fact into account by the coefficient&nbsp; $A_6 = 2$.<br>
  
*Eingezeichnet ist auch der graue Pfad&nbsp; $\varphi_4$, assoziiert mit der Sequenz&nbsp; $\underline{x}_4 = (11, 01, 10, 01, 11)$ &nbsp; &#8658; &nbsp; $w(\varphi_4) = 7$. Auch die Sequenzen&nbsp; $\underline{x}_5 = (11, 01, 01, 00, 10, 11)$,&nbsp; $\underline{x}_6 = (11, 10, 00, 01, 01, 11)$&nbsp; und&nbsp; $\underline{x}_7 = (11, 10, 00, 10, 00, 10, 11)$&nbsp; haben das Pfadgewicht&nbsp; $7$&nbsp; &nbsp; &#8658; &nbsp; $A_7 = 4$.<br><br>
+
*Also drawn is the gray path&nbsp; $\varphi_4$, associated with the sequence&nbsp; $\underline{x}_4 = (11, 01, 10, 01, 11)$ &nbsp; &#8658; &nbsp; $w(\varphi_4) = 7$. Also, the sequences&nbsp; $\underline{x}_5 = (11, 01, 01, 00, 10, 11)$,&nbsp; $\underline{x}_6 = (11, 10, 00, 01, 01, 11)$&nbsp; and&nbsp; $\underline{x}_7 = (11, 10, 00, 10, 00, 10, 11)$&nbsp; have path weighting&nbsp; $7$&nbsp; &nbsp; &#8658; &nbsp; $A_7 = 4$.<br><br>
  
Damit lautet die Pfadgewichtsfunktion:
+
Thus, the path weighting function is:
  
 
::<math>T(X) = A_5 \cdot X^5 + A_6 \cdot X^6  + A_7 \cdot X^7 + \text{...} \hspace{0.1cm}=  X^5 + 2 \cdot X^6  + 4 \cdot X^7+ \text{...}\hspace{0.1cm}
 
::<math>T(X) = A_5 \cdot X^5 + A_6 \cdot X^6  + A_7 \cdot X^7 + \text{...} \hspace{0.1cm}=  X^5 + 2 \cdot X^6  + 4 \cdot X^7+ \text{...}\hspace{0.1cm}

Revision as of 14:43, 20 October 2022

Free distance vs. minimum distance


An important parameter regarding the error probability of linear block codes is the  minimum distance  between two code words  $\underline{x}$  and  $\underline{x}\hspace{0.05cm}'$:

\[d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}\hspace{0.05cm}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}\hspace{0.05cm}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}\hspace{0.05cm}') = \min_{\substack{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{0}}}\hspace{0.1cm}w_{\rm H}(\underline{x}) \hspace{0.05cm}.\]

The second part of the equation arises from the fact that every linear code also includes the zero word  $(\underline{0})$ . It is therefore convenient to set  $\underline{x}\hspace{0.05cm}' = \underline{0}$, so that the  "Hamming distance"  $d_{\rm H}(\underline{x}, \ \underline{0})$  gives the same result as Hamming weight  $w_{\rm H}(\underline{x})$.

Code word of the  $(7, 4, 3)$ Hamming code

$\text{Example 1:}$  The table shows the 16 codewords of the  "$(7, 4, 3)$–Hamming codes" 
$($see  $\text{Example 7})$.

  • All codewords except the null word  $(\underline{0})$  contain at least three ones   ⇒   $d_{\rm min} = 3$.
  • There are seven codewords with three ones (highlighted in yellow), seven with four ones (highlighted in green), and one each with no ones and seven ones

.


The  free distance  $d_{\rm F}$  of a (convolutional code   ⇒   $\mathcal{CC}$) is formulaically no different from the minimum distance of a linear block code:

\[d_{\rm F}(\mathcal{CC}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}\hspace{0.05cm}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{CC} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}\hspace{0.05cm}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}\hspace{0.05cm}') = \min_{\substack{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{CC} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{0}}}\hspace{0.1cm}w_{\rm H}(\underline{x}) \hspace{0.05cm}.\]

In the literature instead of  $d_{\rm F}$  sometimes also  $d_{∞}$  is used.

  • Major difference to minimal distance is that in convolutional codes not information– and codewords are to be considered, but sequences with the property  "semi–infinite".
  • Each code sequence  $\underline{x}$  describes a path through the trellis.
  • The free distance is the smallest possible Hamming weight of such a path (except for the zero path).


The graph shows three of the infinite paths with the minimum Hamming weight  $w_{\rm H, \ min}(\underline{x}) = d_{\rm F} = 5$.

Einige Pfade mit  $w(\underline{x}) = d_{\rm F} = 5$

Path weighting function


For any linear block code, a weight enumerator function can be given in a simple way because of the finite number of codewords  $\underline{x}$ . For the  $\text{"Example 1"}$  on the previous page this is:

\[W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.05cm}.\]

In the case of a (non-terminated) convolutional code, no such weight function can be given, since there are infinitely many, infinitely long code sequences  $\underline{x}$  and thus also infinitely many trellis paths. To get a grip on this problem, we now assume the following:

  • As a reference for the trellis diagram, we always choose the path of the code sequence  $\underline{x} = \underline{0}$  and call this the zero path  $\varphi_0$.
  • We now consider only those paths  $\varphi_j ∈ {\it \Phi}$ that all deviate from the zero path at a given time  $t$  and return to it at some point.

Although only a fraction of all paths belong to the set  ${\it \Phi}$  , ${\it \Phi} = \{\varphi_1, \ \varphi_2, \ \varphi_3, \ \text{...} \}$  still an unbounded set of paths. $\varphi_0$  is not one of them.

Some paths and their path weightings

In the above trellis some paths  $\varphi_j ∈ {\it \Phi}$  are drawn:

  • The yellow path  $\varphi_1$  belongs to the sequence  $\underline{x}_1 = (11, 10, 11)$  with hamming–weight  $w_{\rm H}(\underline{x}_1) = 5$. Thus, the path weighting  $w(\varphi_1) = 5$ as well. Due to the definition of the branching time  $t$  only this single path  $\varphi_1$  has the free distance  $d_{\rm F} = 5$  to the zero path   ⇒   $A_5 = 1$.
  • For the two green paths with corresponding sequences  $\underline{x}_2 = (11, 01, 01, 11)$  and   $\underline{x}_3 = (11, 10, 00, 10, 11)$  respectively,  $w(\varphi_2) = w(\varphi_3) = 6$ holds. No other path exhibits the path weighting  $6$ . We take this fact into account by the coefficient  $A_6 = 2$.
  • Also drawn is the gray path  $\varphi_4$, associated with the sequence  $\underline{x}_4 = (11, 01, 10, 01, 11)$   ⇒   $w(\varphi_4) = 7$. Also, the sequences  $\underline{x}_5 = (11, 01, 01, 00, 10, 11)$,  $\underline{x}_6 = (11, 10, 00, 01, 01, 11)$  and  $\underline{x}_7 = (11, 10, 00, 10, 00, 10, 11)$  have path weighting  $7$    ⇒   $A_7 = 4$.

Thus, the path weighting function is:

\[T(X) = A_5 \cdot X^5 + A_6 \cdot X^6 + A_7 \cdot X^7 + \text{...} \hspace{0.1cm}= X^5 + 2 \cdot X^6 + 4 \cdot X^7+ \text{...}\hspace{0.1cm} \hspace{0.05cm}.\]

Die Definition dieser Funktion  $T(X)$  lautet:

$\text{Definition:}$  Für die  Pfadgewichtsfunktion  (englisch:  Path Weight Enumerator Function, PWEF) eines Faltungscodes gilt:

\[T(X) = \sum_{\varphi_j \in {\it \Phi} }\hspace{0.1cm} X^{w(\varphi_j) } \hspace{0.1cm}=\hspace{0.1cm} \sum_{w\hspace{0.05cm} =\hspace{0.05cm} d_{\rm F} }^{\infty}\hspace{0.1cm} A_w \cdot X^w \hspace{0.05cm}.\]
  • ${\it \Phi}$  bezeichnet die Menge aller Pfade, die den Nullpfad  $\varphi_0$  genau zum festgelegten Zeitpunkt  $t$  verlassen und (irgendwann) später zu diesem zurückkehren.
  • Gemäß dem zweiten Gleichungsteil sind die Summanden nach ihren Pfadgewichten  $w$  geordnet, wobei  $A_w$  die Anzahl der Pfade mit Pfadgewicht  $w$  bezeichnet.
  • Die Summe beginnt mit  $w = d_{\rm F}$.
  • Das Pfadgewicht  $w(\varphi_j)$  ist gleich dem Hamming–Gewicht (Anzahl der Einsen) der zum Pfad  $\varphi_j$  assoziierten Codesequenz  $\underline{x}_j$:
\[w({\varphi_j) = w_{\rm H}(\underline {x} }_j) \hspace{0.05cm}.\]


Hinweis:   Die für lineare Blockcodes definierte Gewichtsfunktion  $W(X)$  und die Pfadgewichtsfunktion  $T(X)$  der Faltungscodes weisen viele Gemeinsamkeiten auf; sie sind jedoch nicht identisch.

Wir betrachten nochmals die Gewichtsfunktion des  $(7, 4, 3)$–Hamming–Codes,

\[W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7},\]

und die Pfadgewichtsfunktion unseres Standard–Faltungscodierers,

\[T(X) = X^5 + 2 \cdot X^6 + 4 \cdot X^7+ 8 \cdot X^8+ \text{...} \]

Auffallend ist die "$1$" in der ersten Gleichung, die in der zweiten Gleichung fehlt. Das heißt:   Bei den linearen Blockcodes wird das Bezugs–Codewort  $\underline{x}_i = \underline{0}$  mitgezählt, wohingegen die Nullcodesequenz  $\underline{x}_i = \underline{0}$  bzw. der Nullpfad  $\varphi_0$  bei den Faltungscodes per Definition ausgeschlossen wird.

$\text{Persönliche Meinung des Autors:}$ 

Man hätte  $W(X)$  ebenfalls ohne die "$1$" definieren können. Damit wäre unter anderem vermieden worden, dass sich die Bhattacharyya–Schranke für lineare Blockcodes und diejenge für Faltungscodes durch "$-1$" unterscheiden, wie aus den folgenden Gleichungen hervorgeht:


Erweiterte Pfadgewichtsfunktion


Die Pfadgewichtsfunktion  $T(X)$  liefert nur Informationen hinsichtlich der Gewichte der Codesequenz  $\underline{x}$.

  • Mehr Informationen erhält man, wenn zusätzlich auch die Gewichte der Informationssequenz  $\underline{u}$  erfasst werden.
  • Man benötigt dann zwei Formalparameter  $X$  und  $U$, wie aus der folgenden Definition hervorgeht.


$\text{Definition:}$  Die  erweiterte Pfadgewichtsfunktion  (englisch:  Enhanced Path Weight Enumerator Function, EPWEF) lautet:

\[T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi} }\hspace{0.1cm} X^{w(\varphi_j)} \cdot U^{ { u}(\varphi_j)} \hspace{0.1cm}=\hspace{0.1cm} \sum_{w} \sum_{u}\hspace{0.1cm} A_{w, \hspace{0.05cm}u} \cdot X^w \cdot U^{u} \hspace{0.05cm}.\]

Es gelten alle Angaben zur  $T(X)$–Definition auf der letzten Seite. Zusätzlich ist zu beachten:

  • Das Pfadeingangsgewicht  $u(\varphi_j)$  ist gleich dem Hamming–Gewicht der zum Pfad  $\varphi_j$  assoziierten Informationssequenz  $\underline{u}_j$. Es wird als Potenz des Formalparameters  $U$  ausgedrückt.
  • Der Koeffizient  $A_{w, \ u}$  bezeichnet die Anzahl der Pfade  $\varphi_j$  mit dem Pfadausgangsgewicht  $w(\varphi_j)$  und dem Pfadeingangsgewicht  $u(\varphi_j)$. Als Laufvariable für den zweiten Anteil wird  $u$  verwendet.
  • Setzt man in der erweiterten Pfadgewichtsfunktion den Formalparameter  $U = 1$, so ergibt sich die ursprüngliche Gewichtsfunktion  $T(X)$  gemäß der Definition auf der letzten Seite.


Bei vielen (und allen relevanten) Faltungscodes lässt sich obere Gleichung noch vereinfachen:

\[T_{\rm enh}(X, U) =\hspace{0.1cm} \sum_{w \ = \ d_{\rm F} }^{\infty}\hspace{0.1cm} A_w \cdot X^w \cdot U^{u} \hspace{0.05cm}.\]


$\text{Beispiel 2:}$  Die erweiterte Pfadgewichtsfunktion unseres Standardcodieres lautet somit:

\[T_{\rm enh}(X, U) = U \cdot X^5 + 2 \cdot U^2 \cdot X^6 + 4 \cdot U^3 \cdot X^7+ \text{ ...} \hspace{0.1cm} \hspace{0.05cm}.\]

Vergleicht man dieses Ergebnis mit dem unten dargestellten Trellis, so erkennt man:

  • Der gelb hinterlegte Pfad – gekennzeichnet durch  $X^5$  – setzt sich aus einem blauen Pfeil  $(u_i = 1)$  und zwei roten Pfeilen  $(u_i = 0)$  zusammen. Somit wird aus  $X^5$  der erweiterte Term  $UX^5$.
  • Die Sequenzen der beiden grünen Pfade sind  $\underline{u}_2 = (1, 1, 0, 0)$   ⇒   $\underline{x}_2 = (11, 01, 01, 11)$  sowie  $\underline{u}_3 = (1, 0, 1, 0, 0)$   ⇒   $\underline{x}_3 = (11, 10, 00, 10, 11)$. Daraus ergibt sich der zweite Term  $2 \cdot U^2X^6$.
  • Der graue Pfad (und die drei nicht gezeichneten Pfade) ergeben zusammen den Beitrag  $4 \cdot U^3X^7$. Jeder dieser Pfade beinhaltet drei blaue Pfeile   ⇒   drei Einsen in der zugehörigen Informationssequenz.


Einige Pfade und ihre Pfadgewichte


Pfadgewichtsfunktion aus Zustandsübergangsdiagramm


Es gibt eine elegante Methode, um die Pfadgewichtsfunktion  $T(X)$  und deren Erweiterung direkt aus dem Zustandsübergangsdiagramm zu bestimmen. Dies soll hier und auf den folgenden Seiten am Beispiel unseres  Standardcodierers  demonstriert werden.

Zunächst muss dazu das Zustandsübergangsdiagramm umgezeichnet werden. Die Grafik zeigt dieses links in der bisherigen Form als Diagramm  $\rm (A)$, während rechts das neue Diagramm  $\rm (B)$  angegeben ist.

Zustandsübergangsdiagramm in zwei verschiedenen Varianten

Man erkennt:

  • Der Zustand  $S_0$  wird aufgespalten in den Startzustand  $S_0$  und den Endzustand  $S_0\hspace{0.01cm}'$. Damit lassen sich alle Pfade des Trellisdiagramms, die im Zustand  $S_0$  beginnen und irgendwann zu diesem zurückkehren, auch im rechten Graphen  $\rm (B)$  nachvollziehen. Ausgeschlossen sind dagegen direkte Übergänge von  $S_0$  nach  $S_0\hspace{0.01cm}'$  und damit auch der Nullpfad  $($Dauer–$S_0)$.
  • Im Diagramm  $\rm (A)$  sind die Übergänge anhand der Farben Rot  $($für  $u_i = 0)$  und Blau  $($für  $u_i = 1)$  unterscheidbar, und die Codeworte  $\underline{x}_i ∈ \{00, 01, 10, 11\}$  sind an den Übergängen vermerkt. Im neuen Diagramm  $\rm (B)$  werden  $(00)$  durch  $X^0 = 1$  und  $(11)$  durch  $X^2$  ausgedrückt. Die Codeworte  $(01)$  und  $(10)$  sind nun nicht mehr unterscheidbar, sondern werden einheitlich mit  $X$  bezeichnet.
  • Anders formuliert:   Das Codewort  $\underline{x}_i$  wird nun als  $X^w$  dargestellt, wobei  $X$  eine dem Ausgang (der Codesequenz) zugeordnete Dummy–Variable ist und  $w = w_{\rm H}(\underline{x}_i)$  das Hamming–Gewicht des Codewortes  $\underline{x}_i$  angibt. Bei einem Rate–$1/2$–Code ist der Exponent  $w$  entweder  $0, \ 1$  oder  $2$.
  • Ebenfalls verzichtet wird im Diagramm  $\rm (B)$  auf die Farbcodierung. Das Informationsbit  $u_i = 1$  wird nun durch  $U^1 = U$  und das Informationsbit  $u_i = 0$  durch  $U^0 = 1$  gekennzeichnet. Die Dummy–Variable  $U$  ist also der Eingangssequenz  $\underline{u}$  zugeordnet.

Regeln zur Manipulation des Zustandsübergangsdiagramms


Ziel unserer Berechnungen wird es sein, den (beliebig komplizierten) Weg von  $S_0$  nach  $S_0\hspace{0.01cm}'$  durch die erweiterte Pfadgewichtsfunktion  $T_{\rm enh}(X, \ U)$  zu charakterisieren. Dazu benötigen wir Regeln, um den Graphen schrittweise vereinfachen zu können.

Erfassung serieller Übergänge

Serielle Übergänge

Zwei serielle Verbindungen – gekennzeichnet durch  $A(X, \ U)$  und  $B(X, \ U)$  – können durch eine einzige Verbindung mit dem Produkt dieser Bewertungen ersetzt werden.

Erfassung paralleler Übergänge

Parallele Übergänge

Zwei parallele Verbindungen – gekennzeichnet durch  $A(X, \ U)$  und  $B(X, \ U)$  – werden durch die Summe ihrer Bewertungsfunktionen zusammengefasst.

Reduzierung eines Rings

Ring

Die nebenstehende Konstellation kann durch eine einzige Verbindung ersetzt werden, wobei für die Ersetzung gilt:

\[E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.\]


Reduzierung einer Rückkopplung

Rückkopplung

Durch die Rückkopplung können sich hier zwei Zustände beliebig oft abwechseln. Für diese Konstellation gilt:

\[F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U)\cdot D(X, U)} \hspace{0.05cm}.\]

Die hier angegebenen Gleichungen für Ring und Rückkopplung sind in der  Aufgabe 3.12Z  zu beweisen.

$\text{Beispiel 3:}$  Die oben genannten Regeln sollen nun auf unser Standardbeispiel angewendet werden. In der Grafik sehen Sie links das modifizierte Diagramm  $\rm (B)$.

Zur Reduktion der Zustandsübergänge
  • Zunächst ersetzen wir den rot hinterlegten Umweg von  $S_1$  nach  $S_2$  über  $S_3$  im Diagramm  $\rm (B)$  durch die im Diagramm  $\rm (C)$  eingezeichnete rote Verbindung  $T_1(X, \hspace{0.05cm} U)$. Es handelt sich nach der oberen Klassifizierung um einen "Ring" mit den Beschriftungen  $A = C = U \cdot X$  und  $B = X$, und wir erhalten für die erste Reduktionsfunktion:
\[T_1(X, \hspace{0.05cm} U) = \frac{U \cdot X^2}{1- U \cdot X} \hspace{0.05cm}.\]
  • Nun fassen wir die parallelen Verbindungen entsprechend der blauen Hinterlegung im Diagramm  $\rm (C)$  zusammen und ersetzen diese durch die blaue Verbindung im Diagramm  $\rm (D)$. Die zweite Reduktionsfunktion lautet somit:
\[T_2(X, \hspace{0.05cm}U) = T_1(X, \hspace{0.05cm}U) + X = \frac{U X^2 + X \cdot (1-UX)}{1- U X} = \frac{X}{1- U X} \hspace{0.05cm}.\]
  • Der gesamte Graph  $\rm (D)$  kann dann durch eine einzige Verbindung von  $S_0$  nach  $S_0\hspace{0.01cm}'$  ersetzt werden. Nach der Rückkopplungsregel erhält man für die  erweiterte Pfadgewichtsfunktion:
\[T_{\rm enh}(X, \hspace{0.05cm}U) = \frac{(U X^2) \cdot X^2 \cdot \frac{X}{1- U X} }{1- U \cdot \frac{X}{1- U X} } = \frac{U X^5}{1- U X- U X} = \frac{U X^5}{1- 2 \cdot U X} \hspace{0.05cm}.\]
  • Mit der Reihenentwicklung  $1/(1 \, –x) = 1 + x + x^2 + x^3 + \ \text{...} \ $  lässt sich hierfür auch schreiben:
\[T_{\rm enh}(X, \hspace{0.05cm}U) = U X^5 \cdot \big [ 1 + 2 \hspace{0.05cm}UX + (2 \hspace{0.05cm}UX)^2 + (2 \hspace{0.05cm}UX)^3 + \text{...} \hspace{0.05cm} \big ] \hspace{0.05cm}.\]
  • Setzt man die formale Input–Variable  $U = 1$, so erhält man die "einfache" Pfadgewichtsfunktion, die allein Aussagen über die Gewichtsverteilung der Ausgangssequenz  $\underline{x}$  erlaubt:
\[T(X) = X^5 \cdot \big [ 1 + 2 X + 4 X^2 + 8 X^3 +\text{...}\hspace{0.05cm} \big ] \hspace{0.05cm}.\]
Das gleiche Ergebnis haben wir bereits aus dem Trellisdiagramm auf der Seite  Pfadgewichtsfunktion  abgelesen. Dort gab es einen grauen Pfad mit Gewicht  $5$, zwei gelbe Pfade mit Gewicht  $6$  und vier grüne Pfade mit Gewicht  $7$.


Blockfehlerwahrscheinlichkeit vs. Burstfehlerwahrscheinlichkeit


Einfaches Übertragungsmodell inklusive Codierung/Decodierung

Das einfache Modell gemäß der Skizze gilt sowohl für lineare Blockcodes als auch für Faltungscodes.


Blockcodes

Bei den Blockcodes bezeichnen  $\underline{u} = (u_1, \ \text{...} \hspace{0.05cm}, \ u_i, \ \text{...} \hspace{0.05cm}, \ u_k)$  und  $\underline{v} = (v_1, \ \text{...} \hspace{0.05cm}, v_i, \ \text{...} \hspace{0.05cm} \ , \ v_k)$  die Informationsblöcke am Eingang und Ausgang des Systems.

Damit sind folgende Beschreibungsgrößen angebbar:

  • die Blockfehlerwahrscheinlichkeit   ${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} ≠ \underline{u}),$
  • die Bitfehlerwahrscheinlichkeit   ${\rm Pr(Bitfehler)} = {\rm Pr}(v_i ≠ u_i).$

$\text{Bitte beachten Sie:}$  Bei realen Übertragungssystemen gilt aufgrund des thermischen Rauschens stets:

$${\rm Pr(Bitfehler)} > 0\hspace{0.05cm},\hspace{1.0cm}{\rm Pr(Blockfehler)} > {\rm Pr(Bitfehler)} \hspace{0.05cm}.$$

Hierfür ein einfacher Erklärungsversuch:   Entscheidet der Decoder in jedem Block der Länge  $k$  genau ein Bit falsch,

  • so beträgt auch die mittlere Bitfehlerwahrscheinlichkeit  ${\rm Pr(Bitfehler)}= 1/k$,
  • während für die Blockfehlerwahrscheinlichkeit  ${\rm Pr(Blockfehler)}\equiv 1$  gilt.



Faltungscodes

Bei Faltungscodes ist die Blockfehlerwahrscheinlichkeit nicht angebbar, da hier  $\underline{u} = (u_1, \ u_2, \ \text{...} \hspace{0.05cm})$  und  $\underline{\upsilon} = (v_1, \ v_2, \ \text{...} \hspace{0.05cm})$  Sequenzen darstellen.

Selbst der kleinstmögliche Codeparameter  $k = 1$  führt hier zur Sequenzlänge  $k \hspace{0.05cm}' → ∞$, und die Blockfehlerwahrscheinlichkeit ergäbe sich stets zu  ${\rm Pr(Blockfehler)}\equiv 1$, selbst wenn die Bitfehlerwahrscheinlichkeit extrem klein (aber ungleich Null) ist.

Nullpfad  ${\it \varphi}_0$  und Abweichungspfade  ${\it \varphi}_i$

$\text{Definition:}$  Für die  Burstfehlerwahrscheinlichkeit  eines Faltungscodes gilt:

\[{\rm Pr(Burstfehler)} = {\rm Pr}\big \{ {\rm Decoder\hspace{0.15cm} verl\ddot{a}sst\hspace{0.15cm} zur\hspace{0.15cm} Zeit}\hspace{0.15cm}t \hspace{0.15cm}{\rm den \hspace{0.15cm}korrekten \hspace{0.15cm}Pfad}\big \} \hspace{0.05cm}.\]
  • Um für die folgende Herleitung die Schreibweise zu vereinfachen, gehen wir stets von der Nullsequenz  $(\underline{0})$  aus, die im gezeichneten Trellis als Nullpfad  $\varphi_0$  rot dargestellt ist.
  • Alle anderen Pfade  $\varphi_1, \ \varphi_2, \ \varphi_3, \ \text{...} $  (und noch viele mehr) verlassen  $\varphi_0$  zur Zeit  $t$. Sie alle gehören zur Pfadmenge  ${\it \Phi}$   ⇒   "Viterbi–Decoder verlässt den korrekten Pfad zur Zeit  $t$". Diese Wahrscheinlichkeit wird auf der nächsten Seite berechnet.


Burstfehlerwahrscheinlichkeit und Bhattacharyya–Schranke


Wir gehen wie im früheren Kapitel  Schranken für die Blockfehlerwahrscheinlichkeit  von der paarweisen Fehlerwahrscheinlichkeit  ${\rm Pr}\big [\varphi_0 → \varphi_i \big]$  aus, dass der Decoder anstelle des Pfades  $\varphi_0$  den Pfad  $\varphi_i$  auswählen könnte. Alle betrachteten Pfade  $\varphi_i$  verlassen den Nullpfad  $\varphi_0$  zum Zeitpunkt  $t$; sie gehören somit alle zur Pfadmenge  ${\it \Phi}$.

Zur Berechnung der Burstfehlerwahrscheinlichkeit

Die gesuchte  Burstfehlerwahrscheinlichkeit  ist gleich der folgenden Vereinigungsmenge:

\[{\rm Pr(Burstfehler)}= {\rm Pr}\left (\big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}1}\big] \hspace{0.05cm}\cup\hspace{0.05cm}\big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}2}\big]\hspace{0.05cm}\cup\hspace{0.05cm} \text{... }\hspace{0.05cm} \right )= {\rm Pr} \left ( \cup_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}} \hspace{0.15cm} \big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\big] \right )\hspace{0.05cm}.\]

Eine obere Schranke hierfür bietet die so genannte  Union–Bound:

\[{\rm Pr(Burstfehler)} \le \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.15cm} {\rm Pr}\big [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\big ] = {\rm Pr(Union \hspace{0.15cm}Bound)} \hspace{0.05cm}.\]

Die paarweise Fehlerwahrscheinlichkeit kann mit der  Bhattacharyya–Schranke  abgeschätzt werden:

\[{\rm Pr}\big [\underline {0} \mapsto \underline {x}_{\hspace{0.02cm}i}\big ] \le \beta^{w_{\rm H}({x}_{\hspace{0.02cm}i})}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm Pr}\left [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\right ] \le \hspace{0.05cm} \beta^{w(\varphi_i)}\hspace{0.05cm}.\]

Hierbei bezeichnet

  • $w_{\rm H}(\underline{x}_i)$  das Hamming–Gewicht der möglichen Codesequenz  $\underline{x}_i,$
  • $\ w(\varphi_i)$  das Pfadgewicht des entsprechenden Pfades  $\varphi_i ∈ {\it \Phi}$, und
  • $\beta$  den so genannten  Bhattacharyya–Kanalparameter.


Durch Summation über alle Pfade und einen Vergleich mit der (einfachen)  Pfadgewichtsfunktion  $T(X)$  erhalten wir das Ergebnis:

\[{\rm Pr(Burstfehler)} \le T(X = \beta),\hspace{0.5cm}{\rm mit}\hspace{0.5cm} T(X) = \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.15cm} \hspace{0.05cm} X^{w(\varphi_i)}\hspace{0.05cm}.\]

$\text{Beispiel 4:}$  Für unseren Standardcodierer   ⇒   $R = 1/2, \ \ m = 2, \ \ \mathbf{G}(D) = (1 + D + D^2, \ 1 + D)$  haben wir folgende  Pfadgewichtsfunktion  erhalten:

\[T(X) = X^5 + 2 \cdot X^6 + 4 \cdot X^7 + \ \text{...} \hspace{0.1cm} = X^5 \cdot ( 1 + 2 \cdot X + 4 \cdot X^2+ \ \text{...} \hspace{0.1cm}) \hspace{0.05cm}.\]

Mit der Reihenentwicklung  $1/(1 \, –x) = 1 + x + x^2 + x^3 + \ \text{...} \hspace{0.15cm} $  kann hierfür auch geschrieben werden:

\[T(X) = \frac{X^5}{1-2 \cdot X} \hspace{0.05cm}.\]

Das BSC–Modell liefert mit der Verfälschungswahrscheinlichkeit  $\varepsilon$  folgende Bhattacharyya–Schranke:

\[{\rm Pr(Burstfehler)} \le T(X = \beta) = T\big ( X = 2 \cdot \sqrt{\varepsilon \cdot (1-\varepsilon)} \big ) = \frac{(2 \cdot \sqrt{\varepsilon \cdot (1-\varepsilon)})^5}{1- 4\cdot \sqrt{\varepsilon \cdot (1-\varepsilon)}}\hspace{0.05cm}.\]

In der  Aufgabe 3.14  soll diese Gleichung numerisch ausgewertet werden.


Bitfehlerwahrscheinlichkeit und Viterbi–Schranke


Abschließend wird eine obere Schranke für die Bitfehlerwahrscheinlichkeit angegeben. Gemäß der Grafik gehen wir wie in  [Liv10][1]  von folgenden Gegebenheiten aus:

  • Gesendet wurde die Nullsequenz  $\underline{x} = \underline{0}$   ⇒   Pfad  $\varphi_0$.
  • Die Dauer einer Pfadabweichung (englisch:   Error Burst Duration ) wird mit  $L$  bezeichnet.
  • Den Abstand zweier Bursts (englisch:   Inter–Burst Time ) nennen wir  $N$.
  • Das Hamming–Gewicht des Fehlerbündels sei  $H$.


Zur Definition der Beschreibungsgrößen  $L$,  $N$  und $H$

Für einen Rate–$1/n$–Faltungscode   ⇒   $k = 1$, also einem Informationsbit pro Takt, lässt sich aus den Erwartungswerten  ${\rm E}\big[L \big]$, ${\rm E}\big[N \big]$  und  ${\rm E}\big[H\big]$  der oben definierten Zufallsgrößen eine obere Schranke für die Bitfehlerwahrscheinlichkeit angeben:

\[{\rm Pr(Bitfehler)} = \frac{{\rm E}\big[H\big]}{{\rm E}[L] + {\rm E}\big[N\big]}\hspace{0.15cm} \le \hspace{0.15cm} \frac{{\rm E}\big[H\big]}{{\rm E}\big[N\big]} \hspace{0.05cm}.\]

Hierbei ist vorausgesetzt, dass

  • die (mittlere) Dauer eines Fehlerbündels in der Praxis sehr viel kleiner ist als der zu erwartende Abstand zweier Bündel,
  • die (mittlere) Inter–Burst Time  $E\big[N\big]$  gleich dem Kehrwert der Burstfehlerwahrscheinlichkeit ist,
  • der Erwartungswert im Zähler wie folgt abgeschätzt wird:
\[{\rm E}\big[H \big] \le \frac{1}{\rm Pr(Burstfehler)}\hspace{0.1cm} \cdot \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.05cm} \hspace{0.05cm} u(\varphi_i) \cdot \beta^{w(\varphi_i)} \hspace{0.05cm}.\]

Bei der Herleitung dieser Schranke werden die paarweise Fehlerwahrscheinlichkeit  ${\rm Pr}\big [\varphi_0 → \varphi_i \big]$  sowie die Bhattacharyya–Abschätzung verwendet. Damit erhält man mit

  • dem Pfadeingangsgewicht  $u(\varphi_i),$
  • dem Pfadausgangsgewicht  $w(\varphi_i),$ und
  • dem Bhattacharyya–Parameter  $\beta$


die folgende Abschätzung für die Bitfehlerwahrscheinlichkeit und bezeichnet diese als die  Viterbi–Schranke:

\[{\rm Pr(Bitfehler)}\le \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.05cm} \hspace{0.05cm} u(\varphi_i) \cdot \beta^{w(\varphi_i)} \hspace{0.05cm}.\]

Dieses Zwischenergebnis lässt sich auch in anderer Form darstellen. Wir erinnern uns an die  erweiterte Pfadgewichtsfunktion

\[T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)} \hspace{0.05cm}.\]

Leitet man diese Funktion nach der Dummy–Eingangsvariablen  $U$  ab, so erhält man

\[\frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} { u}(\varphi_j) \cdot X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)-1} \hspace{0.05cm}.\]

Setzen wir schließlich noch für die Dummy–Eingangsvariable  $U = 1$, so erkennen wir den Zusammenhang zum obigen Ergebnis:

\[\left [ \frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{ U=1}} = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} { u}(\varphi_j) \cdot X^{w(\varphi_j)} \hspace{0.05cm}.\]

$\text{Fazit:}$  Die  Bitfehlerwahrscheinlichkeit  eines Faltungscodes kann mit der erweiterten Pfadgewichtsfunktion in geschlossener Form abgeschätzt werden:

\[{\rm Pr(Bitfehler)} \le {\rm Pr(Viterbi)} = \left [ \frac {\rm d}{ {\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{X=\beta \\ U=1} } \hspace{0.05cm}.\]

Man spricht von der  Viterbi–Schranke. Dabei leitet man die erweiterte Pfadgewichtsfunktion nach dem zweiten Parameter  $U$  ab und setzt anschließend 

  • $X = \beta$, 
  • $U = 1$.


Hinweis:   In  Aufgabe 3.14  werden die  Viterbi–Schranke  und die  Bhattacharyya–Schranke  für den Rate–$1/2$–Standardcode und das  BSC–Modell  numerisch ausgewertet.

AWGN–Bitfehlerwahrscheinlichkeit von Faltungscodes

$\text{Beispiel 5:}$  Die Grafik verdeutlicht die gute Korrekturfähigkeit der Faltungscodes beim  AWGN–Kanal.

  • Rote Kreise kennzeichnen die Bitfehlerrate für unseren Rate–$1/2$–Standardcode mit Memory  $m = 2$.
  • Grüne Kreuze markieren einen Faltungscode mit  $m = 6$, dem so genannten  Industrie–Standardcode.

Insbesondere Codes mit großem Gedächtnis  $m$  führen zu großen Gewinnen gegenüber uncodierter Übertragung (gestrichelte Kurve).


Aufgaben zum Kapitel


Aufgabe 3.12: Pfadgewichtsfunktion

Aufgabe 3.12Z: Ring und Rückkopplung

Aufgabe 3.13: Nochmals zu den Pfadgewichtsfunktionen

Aufgabe 3.14: Fehlerwahrscheinlichkeitsschranken

Quellenverzeichnis

  1. Liva, G.: Channel Coding. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, TU München und DLR Oberpfaffenhofen, 2010.