Difference between revisions of "Aufgaben:Exercise 3.7Z: Which Code is Catastrophic?"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}}
 
{{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}}
  
[[File:EN_KC_Z_3_7.png|right|frame|Encoder for  $m = 3$  and state transition diagram.]]
+
[[File:EN_KC_Z_3_7_neu.png|right|frame|Encoder for  $m = 3$  and state transition diagram.]]
 
The adjacent graph shows.
 
The adjacent graph shows.
 
* two different $\text{ Coder A }$ and $\text{ Coder B}$, each with memory  $m = 3$  (top),
 
* two different $\text{ Coder A }$ and $\text{ Coder B}$, each with memory  $m = 3$  (top),

Revision as of 18:13, 8 November 2022

Encoder for  $m = 3$  and state transition diagram.

The adjacent graph shows.

  • two different $\text{ Coder A }$ and $\text{ Coder B}$, each with memory  $m = 3$  (top),
  • two state transition diagrams, labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$ (bottom).


In the last subtask, you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$.

First, the three transfer functions

  • $G(D) = 1 + D + D^2 + D^3$,
  • $G(D) = 1 + D^3$, and
  • $G(D) = 1 + D + D^3$


are analyzed and then the initial sequences  $\underline{x}$  under the condition

$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm} U(D)= \frac{1}{1+D}$$

is calculated. These transfer functions are directly related to the outlined coders.

  • Furthermore, it remains to be clarified which of the two codes is "catastrophic".
  • One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors.





Hints:

$$(1+D) \cdot (1+D^2) = 1+D +D^2+D^3\hspace{0.05cm},$$
$$(1+D) \cdot (1+D+D^2) = 1+D^3\hspace{0.05cm}.$$





Questions

1

What output sequence  $\underline{x}$  results for  $\underline{u} = \underline{1}$  and  $G(D) = 1 + D + D^2 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$.
The output sequence  $\underline{x}$  is time limited.

2

What output sequence  $\underline{x}$  results for  $\underline{u} = \underline{1}$  and  $G(D) = 1 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence  $\underline{x}$  is time limited.

3

What output sequence  $\underline{x}$  results for  $\underline{u} = \underline{1}$  and  $G(D) = 1 + D + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence  $\underline{x}$ is finite in time.

4

What is the code sequence  $\underline{x}$  of $\text{ encoder A }$ for the sequence of ones at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$.
The code sequence  $\underline{x}$  contains finitely many ones.

5

What is the code sequence  $\underline{x}$  of $\text{ encoder B }$ for the sequence of ones at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$.
The code sequence $\underline{x}$ contains finitely many ones.

6

Which statements are true for $\text{ encoder B }$?

To $\text{ encoder B }$ belongs the $\text{ diagram 1}$.
To $\text{ encoder B }$ belongs the $\text{ diagram 2}$.
The $\text{ encoder B }$ is catastrophic.


Solution

(1)  Applicable are solutions 2 and 4:

  • The $D$ transform of the code sequence $\underline{x}$ is given by $U(D) = 1/(1+ D)$ to be.
$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
  • Consider $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.


(2)  Because of $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$, solutions 3 and 4 are applicable here:

$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$


(3)  Only the proposed solution 1 is correct:

  • The polynomial division $(1 + D + D^3)$ by $(1 + D)$ is not possible in the binary Galois field without a remainder.
  • You get $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $   ⇒   Output sequence $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$ which extends to infinity.


(4)  Only the proposed solution 1 is correct:

  • The transfer function matrix of $\text{ coder A }$ is:
$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
  • The first code bit in each case is therefore given by the sequence corresponding to subtask (3) and the second bit by the sequence corresponding to subtask (1):
$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm} \underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}= (11,\hspace{0.05cm} 00,\hspace{0.05cm} 01,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.05cm}.$$


(5)  Applicable are suggested solutions 2 and 4:

  • The transfer function of $\text{ coder B }$ is $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.
  • The first code sequence now results according to subtask (2), while $\underline{x}^{(2)}$ still corresponds to subtask (1).
  • Thus we get here $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$   ⇒   Solution suggestion 2.
  • But solution proposition 4 is also correct. Under the assumption made here  $\underline{u} = \underline{1}$  the code sequence $\underline{x}$ contains only five ones.
  • In the next subtask this fact is taken up again.



(6)  Correct are the proposed solutions 2 and 3:

WAs can be seen from state diagram 1, here the information sequence $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$ to the code sequence $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$. This means:

  • To the $\text{ encoder A }$ belongs the state transition diagram 1.
  • To $\text{ encoder B }$ belongs the state transition diagram 2   ⇒   Proposed solution 2.


For the $\text{ encoder B }$, the following statements hold:

  • $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$,
  • $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.


Das bedeutet:

  • With only five bit errors at positions 1, 2, 3, 5, 6, the zero sequence is decoded as a one sequence and vice versa.
  • Such a code is called catastrophic   ⇒   Solution suggestion 3.