Difference between revisions of "Aufgaben:Exercise 4.08: Repetition to the Convolutional Codes"

From LNTwww
Line 16: Line 16:
 
In the state transition diagram, the state  $S_0$  is always assumed. Two arrows go from each state. The label is "$u_i \hspace{0.05cm}|\hspace{0.05cm} x_i^{(1)}x_i^{(2)}$". For a systematic code, this holds:
 
In the state transition diagram, the state  $S_0$  is always assumed. Two arrows go from each state. The label is "$u_i \hspace{0.05cm}|\hspace{0.05cm} x_i^{(1)}x_i^{(2)}$". For a systematic code, this holds:
 
* The first code bit is identical to the information bit:   $\ x_i^{(1)} = u_i ∈ \{0, \, 1\}$
 
* The first code bit is identical to the information bit:   $\ x_i^{(1)} = u_i ∈ \{0, \, 1\}$
* The second code bit is the check bit (parity bit):   $\ x_i^{(2)} = p_i ∈ \{0, \, 1\}$.
+
* The second code bit is the parity-check bit:   $\ x_i^{(2)} = p_i ∈ \{0, \, 1\}$.
  
  
Line 28: Line 28:
 
* The following semi–infinite vectors are used in the questions for this exercise:
 
* The following semi–infinite vectors are used in the questions for this exercise:
 
:* information sequence  $\ \underline{u} = (u_1, \, u_2, \text{ ...})$,
 
:* information sequence  $\ \underline{u} = (u_1, \, u_2, \text{ ...})$,
:* parity sequence  $\ \underline{p} = (p_1, \, p_2, \text{ ...})$,
+
:* parity-check sequence  $\ \underline{p} = (p_1, \, p_2, \text{ ...})$,
:* impulse response  $\ \underline{g} = (g_1, \, g_2, \text{ ...})$; this is equal to the parity sequence  $\underline{p}$  for  $\underline{u} = (1, \, 0, \, 0, \text{ ...})$.
+
:* impulse response  $\ \underline{g} = (g_1, \, g_2, \text{ ...})$; this is equal to the parity-check sequence  $\underline{p}$  for  $\underline{u} = (1, \, 0, \, 0, \text{ ...})$.
  
  
Line 41: Line 41:
 
+ $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{ ...})$ holds.
 
+ $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{ ...})$ holds.
  
{Now let  $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$  with  $u_7 ∈ \{0, \, 1\}$. Which statements are true for the parity sequence  $\underline{p}$ ?
+
{Now let  $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$  with  $u_7 ∈ \{0, \, 1\}$. Which statements are true for the parity-check sequence  $\underline{p}$ ?
 
|type="[]"}
 
|type="[]"}
+ The first six bits of the parity sequence are  "$1, \, 0, \, 1, \, 1, \, 0, \, 1$".
+
+ The first six bits of the parity-check sequence are  "$1, \, 0, \, 1, \, 1, \, 0, \, 1$".
 
+ With  $u_7 = 0$  holds  $p_i = 0$  for $i > 6$.
 
+ With  $u_7 = 0$  holds  $p_i = 0$  for $i > 6$.
 
- With  $u_7 = 1$  holds  $p_i = 0$  for $i > 8$.
 
- With  $u_7 = 1$  holds  $p_i = 0$  for $i > 8$.
Line 53: Line 53:
 
- It holds  $\mathbf{G}(D) = \big [1 + D^2 \big ]$.
 
- It holds  $\mathbf{G}(D) = \big [1 + D^2 \big ]$.
  
{Now consider the bounded input sequence  $\underline{u} = (1, \, 0, \, 1, \, 0, \, 0, \, 1)$. Which statements hold for the then also bounded parity sequence  $\underline{p}$?
+
{Now consider the bounded input sequence  $\underline{u} = (1, \, 0, \, 1, \, 0, \, 0, \, 1)$. Which statements hold for the then also bounded parity-check sequence  $\underline{p}$?
 
|type="[]"}
 
|type="[]"}
- The first eight bits of the parity sequence are  "$1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0$."
+
- The first eight bits of the parity-check sequence are  "$1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0$."
+ The first eight bits of the parity sequence are  "$1, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1$".
+
+ The first eight bits of the parity-check sequence are  "$1, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1$".
 
+ It holds  $p_i = 0$  for  $i ≥ 9$.
 
+ It holds  $p_i = 0$  for  $i ≥ 9$.
  
Line 75: Line 75:
  
  
'''(2)'''  Let $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$ and $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$. Then the following holds for the parity sequence due to linearity:
+
'''(2)'''  Let $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$ and $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$. Then the following holds for the parity-check sequence due to linearity:
 
:$$\underline{p} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
:$$\underline{p} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
(\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \hspace{0.05cm} 0,\hspace{0.05cm} u_7\hspace{0.05cm} )  
 
(\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \hspace{0.05cm} 0,\hspace{0.05cm} u_7\hspace{0.05cm} )  

Revision as of 19:44, 29 November 2022

State transition diagram of a non-recursive code

The turbo codes are based on convolutional codes, which are discussed in detail in the chapter  "Basics of Convolutional Coding" .

Starting from the adjacent state transition diagram, essential properties and characteristics of the considered rate $1/2$ convolutional code shall be determined, and we explicitly refer to the following theory pages:

  1. "Systematic convolutional codes"
  2. "Representation in the state transition diagram"
  3. "Definition of the free distance"
  4. "GF(2) description forms of a digital filter"
  5. "Application of $D$–transform to rate 1/n convolutional codes."


In the state transition diagram, the state  $S_0$  is always assumed. Two arrows go from each state. The label is "$u_i \hspace{0.05cm}|\hspace{0.05cm} x_i^{(1)}x_i^{(2)}$". For a systematic code, this holds:

  • The first code bit is identical to the information bit:   $\ x_i^{(1)} = u_i ∈ \{0, \, 1\}$
  • The second code bit is the parity-check bit:   $\ x_i^{(2)} = p_i ∈ \{0, \, 1\}$.




Hints:

  • The exercise refers to the chapter  "Basics of Turbo Codes".
  • The following semi–infinite vectors are used in the questions for this exercise:
  • information sequence  $\ \underline{u} = (u_1, \, u_2, \text{ ...})$,
  • parity-check sequence  $\ \underline{p} = (p_1, \, p_2, \text{ ...})$,
  • impulse response  $\ \underline{g} = (g_1, \, g_2, \text{ ...})$; this is equal to the parity-check sequence  $\underline{p}$  for  $\underline{u} = (1, \, 0, \, 0, \text{ ...})$.



Questions

1

What is the impulse response  $\underline{g} $?

$\underline{g} = (1, \, 1, \,1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{ ...})$ holds.
$\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{ ...})$ holds.

2

Now let  $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$  with  $u_7 ∈ \{0, \, 1\}$. Which statements are true for the parity-check sequence  $\underline{p}$ ?

The first six bits of the parity-check sequence are  "$1, \, 0, \, 1, \, 1, \, 0, \, 1$".
With  $u_7 = 0$  holds  $p_i = 0$  for $i > 6$.
With  $u_7 = 1$  holds  $p_i = 0$  for $i > 8$.

3

What is the  $D$–transfer function matrix  $\mathbf{G}(D)$?

It holds  $\mathbf{G}(D) = \big [1, \ 1 + D \big ]$.
It holds  $\mathbf{G}(D) = \big [1, \ 1 + D^2 \big ]$.
It holds  $\mathbf{G}(D) = \big [1 + D^2 \big ]$.

4

Now consider the bounded input sequence  $\underline{u} = (1, \, 0, \, 1, \, 0, \, 0, \, 1)$. Which statements hold for the then also bounded parity-check sequence  $\underline{p}$?

The first eight bits of the parity-check sequence are  "$1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0$."
The first eight bits of the parity-check sequence are  "$1, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1$".
It holds  $p_i = 0$  for  $i ≥ 9$.

5

What is the free distance  $d_{\rm F}$  of the considered convolutional code?

$d_{\rm F} \ = \ $


Solution

(1)  Correct is the proposed solution 2:

  • The impulse response $\underline{g}$ is equal to the output sequence $\underline{p}$ for the input sequence $\underline{u} = (1, \, 0, \, 0, \, 0, \text{ ...})$.
  • Based on the state $S_0$, the state transition diagram results in the following transitions:
$$S_0 → S_1 → S_2 → S_0 → S_0 → S_0 → \text{ ...} \hspace{0.6cm} \Rightarrow \hspace{0.5cm} {\rm impulse\:response} \text{:} \hspace{0.2cm} \underline{g} = (1, \, 0, \, 1, \, 0, \, 0) \, .$$
  • For a non-recursive filter with memory $m$, $g_i ≡ 0$ holds for $i > m$. In our example, $m = 2$.
  • In contrast, the proposed solution 1 applies to the recursive filter (RSC) corresponding to "Exercise 4.9".


(2)  Let $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$ and $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$. Then the following holds for the parity-check sequence due to linearity:

$$\underline{p} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \hspace{0.05cm} 0,\hspace{0.05cm} u_7\hspace{0.05cm} ) * (\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0 ,\hspace{0.05cm} 0,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{ ...})= $$
$$\ = \ \hspace{-0.15cm} (\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}0, \hspace{0.05cm} \text{ ...} \hspace{0.05cm})\hspace{0.05cm}\oplus (\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}0, \hspace{0.05cm} \text{ ...}\hspace{0.05cm})\hspace{0.05cm}\oplus (\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} u_7,\hspace{0.05cm} 0,\hspace{0.05cm}u_7, \hspace{0.05cm} \text{ ...} \hspace{0.05cm}) $$
$$\Rightarrow \hspace{0.3cm}\underline{p} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} u_7,\hspace{0.05cm} 0,\hspace{0.05cm}u_7, \hspace{0.05cm} \text{ ...} \hspace{0.05cm}) \hspace{0.05cm}.$$

Correct are therefore the proposed solutions 1 and 2 in contrast to the answer 3:

  • For $u_7 = 1$ gilt $p_7 = 1, \ p_8 = 0, \ p_9 = 1$ and $p_i ≡ 0$ for $i > 9$.


(3)  Correct is the proposed solution 2:

  • From the state transition diagram one can see the code parameters $k = 1$ and $n = 2$.
  • This means: the transfer function matrix $\mathbf{G}(D)$ consists of two elements   ⇒   the proposition 3 is wrong.
  • The first component of $\mathbf{G}(D)$ is actually 1, since there is a systematic code: $\ \underline{x}^{(1)} ≡ \underline{z}$.
  • The second component of $\mathbf{G}(D)$ is equal to the $D$–transform of the impulse response $\underline{g}$, where the dummy–variable $D$ indicates a delay of one bit:
$$\underline{g}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{ ...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G^{(2)}(D) = 1+ D^2\hspace{0.05cm}. $$


Going beyond the question, we also consider here the filter structure at hand:

Three examples of rate 1/2 convolutional encoders

In the diagram, the encoder considered here is shown as coder $\rm A$ on the left.

  • This is systematic like the encoder $\rm B$, and
  • but, unlike coder $\rm B$, is based on a non-recursive filter.
  • The coder $\rm C$ also has a nonrecursive structure, but is not systematic.
  • The equivalent systematic representation of encoder $\rm C$ is encoder $\rm B$.


(4)  Correct are the proposed solutions 2 and 3:

  • The exercise could be solved in the same way as subtask (2).
  • However, we choose here for a change the way about the $D$–transform:
$$\underline{u}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = 1+ D^2 + D^5$$
$$\Rightarrow \hspace{0.3cm} P(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} U(D) \cdot G(D) = (1+ D^2 + D^5) \cdot (1+ D^2 ) =1+ D^2 + D^5 + D^2 + D^4 + D^7 = 1+ D^4 + D^5 + D^7$$
$$\Rightarrow \hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})\hspace{0.05cm}.$$


(5)  The free distance $d_{\rm F}$ of a convolutional encoder is equal to the minimum number of bits by which any two sequences of this code differ.

  • If we take as a reference the zero sequence, as is commonly done  $\underline{0} \ \Rightarrow \ S_0 → S_0 → S_0 → S_0 → \ \text{ ...} \ $  off, then $d_{\rm F}$ is simultaneously obtained as the minimum Hamming weight (number of ones) of an admissible code sequence  $\underline{x} ≠ \underline{0}$.
  • From the state transition diagram, we can see that the free distance for example is given by the path.
$$ S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \text{ ...}$$
thus identified by the code sequence $00 \hspace{0.1cm} 11 \hspace{0.1cm} 00 \hspace{0.1cm} 01 \hspace{0.1cm} 00 \text{ ...} \ .$
  • Accordingly, for the free distance of this non-recursive code, $\hspace{0.2cm} d_{\rm F} \ \underline{= 3}$.