Difference between revisions of "Examples of Communication Systems/UMTS Network Architecture"

From LNTwww
Line 81: Line 81:
 
For this purpose, it contains at  ''circuit-switched''  the following hardware and software components:
 
For this purpose, it contains at  ''circuit-switched''  the following hardware and software components:
 
*The  '''Mobile Services Switching Center'''  (MSC) is responsible for call routing, localization, authentication, handover and encryption of subscriber data.
 
*The  '''Mobile Services Switching Center'''  (MSC) is responsible for call routing, localization, authentication, handover and encryption of subscriber data.
*The  '''Home Location Register''''  (HLR) contains all subscriber data such as tariff model, telephone number, and the associated service-specific authorizations and keys.
+
*The  '''Home Location Register'''  (HLR) contains all subscriber data such as tariff model, telephone number, and the associated service-specific authorizations and keys.
*The  '''Visitor Location Register''''  (VLR) contains location information about locally registered users and copies of records from its HLR. This data is dynamic:  As soon as the subscriber changes his location, this information is changed.
+
*The  '''Visitor Location Register'''  (VLR) contains location information about locally registered users and copies of records from its HLR. This data is dynamic:  As soon as the subscriber changes his location, this information is changed.
  
  
Line 97: Line 97:
 
[[File:EN_Bei_T_4_2_S4a_v1.png|right|frame|Construction of the dedicated physical channels]]
 
[[File:EN_Bei_T_4_2_S4a_v1.png|right|frame|Construction of the dedicated physical channels]]
  
The  $\rm dedicated \physical \channels$  are permanently assigned to individual communication partners. These include:
+
The  $\rm dedicated \ physical \ channels$  are permanently assigned to individual communication partners. These include:
 
*''Dedicated Physical Data Channel''  ('''DPDCH''')  - This is a unidirectional uplink channel that transports payload and signaling data from higher layers.
 
*''Dedicated Physical Data Channel''  ('''DPDCH''')  - This is a unidirectional uplink channel that transports payload and signaling data from higher layers.
 
*''Dedicated Physical Control Channel''  ('''DPCCH''')  - This control channel contains physical layer information for transmission control, line control commands, and transport format indicators, to name a few examples.
 
*''Dedicated Physical Control Channel''  ('''DPCCH''')  - This control channel contains physical layer information for transmission control, line control commands, and transport format indicators, to name a few examples.
Line 103: Line 103:
  
  
The diagram shows the structural design of the '''DPDCH'''' (blue), of the '''DPCCH'''' (red) as well as the enveloping '''DPCH'''.
+
The diagram shows the structural design of the '''DPDCH''' (blue), of the '''DPCCH''' (red) as well as the enveloping '''DPCH'''.
  
 
*In the '''DPCH''', chips are transmitted in  $10 \ \rm ms$  exactly  $15 - 2560 = 38400$  resulting in chip rate  $3.84 \ \rm Mchip/s$ .
 
*In the '''DPCH''', chips are transmitted in  $10 \ \rm ms$  exactly  $15 - 2560 = 38400$  resulting in chip rate  $3.84 \ \rm Mchip/s$ .
Line 109: Line 109:
 
*In '''DPCCH''', ten control bits are transmitted uniformly per time slot.
 
*In '''DPCCH''', ten control bits are transmitted uniformly per time slot.
 
<br clear=all>
 
<br clear=all>
The table lists the \physical \channels$&nbsp; shared by all participants&nbsp; $\rm.  
+
The table lists the&nbsp; $\rm  \ physical \ channels \ shared$&nbsp; by all participants.  
  
 
[[File:EN_Bei_T_4_2_S4b.png|right|frame|Shared channels in UMTS]]
 
[[File:EN_Bei_T_4_2_S4b.png|right|frame|Shared channels in UMTS]]
Line 127: Line 127:
  
  
==Logische Kanäle ==  
+
==Logical channels ==  
 
<br>
 
<br>
Die logischen Kanäle befinden sich in der MAC (''Medium Access Control'')–Referenzschicht und werden durch den Typ der übertragenen Daten gekennzeichnet.  
+
The logical channels are located in the MAC (''Medium Access Control'') reference layer and are identified by the type of data transmitted.  
  
[[File:EN_Bei_T_4_2_S5.png|right|frame|Logische Kanäle in UMTS]]  
+
[[File:EN_Bei_T_4_2_S5.png|right|frame|Logical channels in UMTS]]  
Die in der Tabelle zusammengestellten logischen Kanäle lassen sich in zwei Klassen unterteilen, nämlich in
+
The logical channels compiled in the table can be divided into two classes, namely.
  
*Kontrollkanäle&nbsp; (''Control Channels''):
+
*Control Channels&nbsp; (''Control Channels''):
:Über die&nbsp; '''Kontrollkanäle'''&nbsp; (mit Endung '''CCH''')&nbsp; werden sowohl Kontrollinformationen&nbsp; ('''BCCH''')&nbsp; als auch Paging–Informationen&nbsp; ('''PCCH''')&nbsp; transportiert. Darüber können auch teilnehmerspezifische Signalisierungsdaten&nbsp; ('''DCCH''')&nbsp; oder Transportinformationen zwischen den Teilnehmergeräten und dem UTRAN&nbsp; ('''CCCH''')&nbsp; ausgetauscht werden.  
+
:Control information&nbsp; ('''BCCH''')&nbsp; as well as paging information&nbsp; ('''PCCH''')&nbsp; are transported via the&nbsp; '''Control Channels'''&nbsp; (ending with '''CCH''')&nbsp;. Subscriber-specific signaling data&nbsp; ('''DCCH''')&nbsp; or transport information can also be exchanged between subscriber devices and the UTRAN&nbsp; ('''CCCH''')&nbsp; over this.  
*Verkehrskanäle&nbsp; (''Traffic Channels''):
+
*Traffic Channels&nbsp; (''Traffic Channels''):
:Über die&nbsp; '''Verkehrskanäle'''&nbsp; (mit Endung&nbsp; '''TCH''')&nbsp; werden Teilnehmerinformationen ausgetauscht. Während der&nbsp; '''DTCH'''&nbsp; einem mobilen Teilnehmer zum Nutzdatentransport individuell zugewiesen werden kann, wird ein&nbsp; '''CTCH'''&nbsp; vorwiegend an alle oder an eine vordefinierte Teilnehmergruppe  vergeben.
+
:Subscriber information is exchanged over the&nbsp; '''Traffic Channels'''&nbsp; (ending&nbsp; '''TCH''')&nbsp;. While the&nbsp; '''DTCH'''&nbsp; can be assigned individually to a mobile subscriber for user data transport, a&nbsp; '''CTCH'''&nbsp; is predominantly assigned to all or to a predefined subscriber group.
 
<br clear=all>  
 
<br clear=all>  
== Transportkanäle ==  
+
== Transport channels ==  
 
<br>
 
<br>
Transportkanäle befinden sich in der physikalischen Schicht des&nbsp; [https://de.wikipedia.org/wiki/OSI-Modell ISO/OSI–Schichtenmodells]. Sie
+
Transport channels are located in the physical layer of the [https://en.wikipedia.org/wiki/OSI_model ISO/OSI layer model]. They
*werden durch die Parameter der Datenübertragung (z.B. die Datenrate) gekennzeichnet,
+
*are characterized by the parameters of the data transmission (e.g. the data rate),
*gewährleisten die gewünschten Anforderungen bezüglich der Fehlerschutzmechanismen, und
+
*ensure the desired requirements regarding error protection mechanisms, and
*legen die Art der Datenübertragung – so zu sagen das „WIE” – fest.
+
*determine the type of data transmission - the "HOW", so to speak.
  
  
Man unterscheidet zwei Klassen von Transportkanälen, nämlich dedizierte und gemeinsam genutzte Transportkanäle.
+
Two classes of transport channels are distinguished, namely dedicated and shared transport channels.
  
Zur Klasse der&nbsp; $\rm dedizierten \ Transportkanäle$&nbsp; (''Dedicated Transport Channels'' '''DTCH''') gehören die&nbsp; ''Dedicated Channels''&nbsp; ('''DCH'''), die Teilnehmern fest zugewiesen werden.  
+
The class of&nbsp; $\rm dedicated \ transport \ channels$&nbsp; (''Dedicated Transport Channels'' - '''DTCH''') includes the&nbsp; ''Dedicated Channels''&nbsp; ('''DCH'''), which are permanently assigned to participants.  
*Ein&nbsp; '''DCH'''&nbsp; transportiert sowohl Nutzdaten als auch Kontrolldaten (Handover–Daten, Messdaten, ...) an die höheren Schichten, in denen sie dann interpretiert und verarbeitet werden.
+
*A&nbsp; '''DCH'''&nbsp; transports both user data and control data (handover data, measurement data, ...) to the higher layers, where they are then interpreted and processed.
  
  
Zu den&nbsp; $\rm gemeinsam \ genutzten \ Transportkanälen$&nbsp; (''Common Transport Channels''&nbsp; '''CTCH''')&nbsp; gehören beispielsweise:
+
The&nbsp; $\rm shared \ transport \ channels$&nbsp; (''Common Transport Channels''&nbsp; - '''CTCH''')&nbsp; include, for example:
*Der&nbsp; ''Broadcast Channel''&nbsp; ('''BCH''')&nbsp; ist ein Downlink–Kanal, der netzbetreiberspezifische Daten der Funkzelle&nbsp; (zum Beispiel:&nbsp; ''Access Random Codes''&nbsp; zur Signalisierung eines Verbindungsaufbaus)&nbsp; an die Teilnehmer verteilt. Charakteristisch ist seine relativ hohe Leistung und niedrige Datenrate $($nur&nbsp; $\text{3.4 kbit/s)}$, um allen Nutzern einen möglichst fehlerfreien Empfang und hohen Prozessgewinn zu ermöglichen.
+
*The&nbsp; ''Broadcast Channel''&nbsp; ('''BCH''')&nbsp; is a downlink channel that distributes network operator-specific radio cell data&nbsp; (for example:&nbsp; ''Access Random Codes''&nbsp; for signaling a connection setup)&nbsp; to the subscribers. It is characterized by its relatively high power and low data rate $($only&nbsp; $\text{3.4 kbit/s)}$, in order to provide all users with the most error-free reception and high process gain.
*Der&nbsp; ''Forward Access Channel''&nbsp; ('''FACH''')&nbsp; ist ein Downlink–Kanal, zuständig für den Transport von Kontrolldaten. Eine Zelle kann mehrere FACH–Kanäle enthalten, wobei einer der Kanäle eine niedrige Datenrate aufweisen muss, um allen Nutzern die Auswertung seiner Daten zu ermöglichen.
+
*The&nbsp; ''Forward Access Channel''&nbsp; ('''FACH''')&nbsp; is a downlink channel, responsible for transporting control data. A cell may contain several FACH channels, one of which must have a low data rate to allow all users to evaluate its data.
*Der&nbsp; ''Random Access Channel''&nbsp; ('''RACH''')&nbsp; ist ein unidirektionaler Uplink–Kanal. Der Teilnehmer kann damit den Wunsch äußern, eine Funkverbindung aufbauen zu wollen. Außerdem können darüber auch kleine Datenmengen übertragen werden.
+
*The&nbsp; ''Random Access Channel''&nbsp; ('''RACH''')&nbsp; is a unidirectional uplink channel. The subscriber can use it to express the desire to establish a radio link. It can also be used to transmit small amounts of data.
*Der&nbsp; ''Common Packet Channel''&nbsp; ('''CPCH''')&nbsp; ist ein unidirektionaler Uplink–Datenkanalfür paketorientierte Dienste und eine Erweiterung des RACH–Kanals.
+
*The&nbsp; ''Common Packet Channel''&nbsp; ('''CPCH''')&nbsp; is a unidirectional uplink data channelfor packet-oriented services and an extension of the RACH channel.
*Der&nbsp; ''Paging Channel''&nbsp; ('''PCH''')&nbsp; ist ein unidirektionaler Downlink–Kanal zur Lokalisierung eines Teilnehmers mit Daten für die Paging–Prozedur.
+
*The&nbsp; ''Paging Channel''&nbsp; ('''PCH''')&nbsp; is a unidirectional downlink channel for locating a subscriber with data for the paging procedure.
  
  
[[File:P_ID1523__Bei_T_4_2_S6_v1.png|right|frame|Verbindungsaufbau bei UMTS]]  
+
[[File:P_ID1523__Bei_T_4_2_S6_v1.png|right|frame|Connection setup for UMTS]]  
{{GraueBox|TEXT=
+
{{GraueBox|TEXT=  
$\text{Beispiel 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
Die Grafik soll die Interaktion zwischen den Transportkanälen &nbsp;'''RACH'''&nbsp; und &nbsp;'''FACH'''&nbsp; mit den logischen Kanälen &nbsp;'''CCCH'''&nbsp; und &nbsp;'''DCCH'''&nbsp; bei einem einfachen Verbindungsaufbau erläutern.
+
This diagram is intended to explain the interaction between the transport channels &nbsp;'''RACH'''&nbsp; and &nbsp;'''FACH'''&nbsp; with the logical channels &nbsp;'''CCCH'''&nbsp; and &nbsp;'''DCCH'''&nbsp; in a simple call setup.
  
Einige Erklärungen zu diesem Schaubild:
+
Some explanations of this diagram:
*Ein mobiler Teilnehmer&nbsp; (''Mobile Equipment'', ME)&nbsp; äußert den Wunsch für einen Verbindungsaufbau. Als erstes wird dann mit Hilfe des logischen Kanals&nbsp;   '''CCCH'''&nbsp; und des Transportkanals&nbsp;   '''RACH'''&nbsp; eine Verbindungsanfrage über den UTRAN an den&nbsp; ''Radio Network Controller''&nbsp; (RNC) gesendet.
+
*A mobile subscriber&nbsp; (''Mobile Equipment'', ME)&nbsp; expresses a request for a connection setup. First, using the logical channel&nbsp; '''CCCH'''&nbsp; and the transport channel&nbsp; '''RACH'''&nbsp; a connection request is then sent via the UTRAN to the&nbsp; ''Radio Network Controller''&nbsp; (RNC).
*Hierzu wird das&nbsp; '''RRC'''–Protokoll&nbsp; (''Radio Resource Control'')&nbsp; verwendet, das die Aufgabe hat, die Signalisierung zwischen dem Teilnehmer und UTRAN/RNC zu gewährleisten.
+
*For this purpose, the&nbsp; '''RRC''' protocol&nbsp; (''Radio Resource Control'')&nbsp; is used, which has the exercise of providing signaling between the subscriber and UTRAN/RNC.
*Der&nbsp; ''Radio Network Controller''&nbsp; (RNC) antwortet auf diese Anfrage über den Transportkanal&nbsp;   '''FACH'''. Dabei werden dem Teilnehmer die nötigen Kontrolldaten für den Verbindungsaufbau übersendet.
+
*The&nbsp; ''Radio Network Controller''&nbsp; (RNC) responds to this request via the transport channel&nbsp; '''FACH'''. Thereby the necessary control data for the connection setup is sent to the subscriber.
*Erst danach wird die Verbindung mit Hilfe des logischen Kanals&nbsp; '''DCCH'''&nbsp; tatsächlich aufgebaut.}}
+
*Only then the connection is actually established using the logical channel&nbsp; '''DCCH'''&nbsp; }}.
  
  
==Kommunikation innerhalb des ISO/OSI–Schichtenmodells==   
+
==Communication within the ISO/OSI layer model==   
 
<br>
 
<br>
Die Kommunikation zwischen den verschiedenen Schichten des ISO/OSI–Modells wird durch die auf den letzten Seiten vorgestellten logischen, physikalischen und Transport–Kanäle sichergestellt.  
+
Communication between the different layers of the ISO/OSI model is ensured by the logical, physical and transport channels presented on the last pages.  
  
[[File:P_ID1518__Bei_T_4_2_S7a_87.png|right|frame|Abbildung der Kanäle bei UMTS]]  
+
[[File:P_ID1518__Bei_T_4_2_S7a_87.png|right|frame|Image of the channels in UMTS]]  
Die Grafik rechts zeigt die Struktur sowohl für die Aufwärtsrichtung (Uplink) als auch für die Abwärtsrichtung (Downlink).
+
The graphic on the right shows the structure for both the uplink and downlink directions.
  
Um die Funktionsfähigkeit und den Datenaustausch innerhalb des Gesamtmodells zu garantieren, müssen diese entsprechend der Grafik aufeinander abgebildet werden:
+
To guarantee functionality and data exchange within the overall model, these must be mapped to each other according to the graphic:
*Zunächst erfolgt die Abbildung des logischen Kanals auf den Transportkanal,
+
*First, the logical channel is mapped to the transport channel,
*danach die Abbildung des Transportkanals auf einen physikalischen Kanal.
+
*then the mapping of the transport channel to a physical channel.
  
  
  
[[File:P_ID1519__Bei_T_4_2_S7b_v1.png|left|frame|Ausschnitt aus dem ISO/OSI–Schichtenmodell]]  
+
[[File:P_ID1519__Bei_T_4_2_S7b_v1.png|left|frame|Excerpt from the ISO/OSI layer model]]  
 
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
 
<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>
Die untere (linke) Grafik soll einen Gesamtüberblick über die Struktur der drei untersten Schichten des ISO/OSI–Modells geben und die Interaktionen der verschiedenen Kanalarten vermitteln.
+
The lower (left) graphic is intended to give an overall view of the structure of the three lowest layers of the ISO/OSI model and to convey the interactions of the different channel types.
 
<br clear=all>
 
<br clear=all>
== Zellulare Architektur von UMTS ==  
+
== Cellular architecture of UMTS ==  
 
<br>
 
<br>
Um ein flächendeckendes Netz mit geringer Sendeleistung und ausreichender Frequenzökonomie zu ermöglichen, werden auch bei UMTS wie bei GSM Funkzellen eingerichtet. Die Funkzellen sind im UMTS–Netz&nbsp; $($Trägerfrequenz um&nbsp; $\text{2 GHz)}$&nbsp; deutlich kleiner als bei GSM&nbsp; $($Trägerfrequenz um&nbsp; $\text{900 MHz)}$, da bei gleicher Sendeleistung die Reichweite von Funksignalen mit steigender Frequenz abnimmt.
+
To enable a nationwide network with low transmission power and sufficient frequency economy, radio cells are also set up in UMTS, as in GSM. The radio cells in the UMTS network&nbsp; $($carrier frequency&nbsp; $\text{2 GHz)}$&nbsp; are significantly smaller than in GSM&nbsp; $($carrier frequency&nbsp; $\text{900 MHz)}$, since the range of radio signals decreases with increasing frequency for the same transmission power.
  
Die Grafik zeigt die&nbsp; '''Zellenstruktur'''&nbsp; von UMTS. Man erkennt daraus einen hierarchischen Aufbau und drei Typen von Funkzellen:
+
The graphic shows the&nbsp; '''cell structure'''&nbsp; of UMTS. One recognizes from it a hierarchical structure and three types of radio cells:
[[File:P_ID1520__Bei_T_4_2_S8a_60.png|right|frame|Zellenaufbau bei UMTS]]  
+
[[File:P_ID1520__Bei_T_4_2_S8a_60.png|right|frame|Cell structure in UMTS]]  
*'''Makrozellen'''&nbsp; sind mit vier bis sechs Kilometer Durchmesser die größten Zellen. Sie erlauben relativ schnelle Bewegungungen. Beispielsweise ist eine Bewegungsgeschwindigkeit bis zu maximal&nbsp; $500\ \rm km/h$&nbsp; zulässig, wenn die Datenrate&nbsp; $144 \ \rm kbit/s$&nbsp; beträgt. Eine Makrozelle kann möglicherweise eine Vielzahl von Mikro– und Pikozellen überlagern.
+
*'''Macrocells'''&nbsp; are the largest cells with a diameter of four to six kilometers. They allow relatively fast movements. For example, a movement speed up to a maximum of&nbsp; $500\ \rm km/h$&nbsp; is allowed if the data rate is&nbsp; $144 \ \rm kbit/s$&nbsp;. A macrocell can potentially overlay a large number of microcells and picocells.
*'''Mikrozellen'''&nbsp; sind mit ein bis zwei Kilometer Durchmesser deutlich kleiner als Makrozellen. Sie erlauben höhere Datenraten bis&nbsp; $384 \ \rm kbit/s$, dafür aber nur langsamere Bewegungsgeschwindigkeiten. Zum Beispiel ist bei der maximalen Datenrate die maximal zulässige Geschwindigkeit nur noch&nbsp; $120\ \rm   km/h$. Eine Mikrozelle überlagert keine, eine oder eine Vielzahl von Pikozellen.
+
*'''Microcells'''&nbsp; are much smaller than macrocells at one to two kilometers in diameter. They allow higher data rates up to&nbsp; $384 \rm kbit/s$, but only slower movement speeds. For example, at the maximum data rate, the maximum allowed speed is only&nbsp; $120\ \rm km/h$. A microcell overlays none, one, or a plurality of picocells.
*'''Pikozellen'''&nbsp; versorgen nur sehr kleine Gebiete mit etwa&nbsp; $100$&nbsp; Meter Durchmesser, aber sehr hohem Datenaufkommen. Sie werden in hochverdichteten Orten wie zum Beispiel Flughäfen, Stadien, usw. eingesetzt. Zulässig sind theoretisch Datenraten bis&nbsp; $2\ \rm   Mbit/s$.
+
*'''Picocells'''&nbsp; serve only very small areas about&nbsp; $100$&nbsp; meters in diameter, but very high data volumes. They are used in high density locations such as airports, stadiums, etc. Data rates up to&nbsp; $2\ \rm Mbit/s$ are theoretically allowed.
 
<br clear=all>
 
<br clear=all>
Da UMTS als Vielfachzugriffsverfahren&nbsp; [[Modulationsverfahren/Aufgaben_und_Klassifizierung#FDMA.2C_TDMA_und_CDMA|Code Division Multiple Access]]&nbsp; (CDMA) verwendet, benutzen alle Teilnehmer den gleichen Frequenzkanal. Dies resultiert in einer relativ hohen Interferenzleistung und einem sehr niedrigen&nbsp; ''Träger–zu–Interferenz–Abstand''&nbsp; (englisch:&nbsp; ''Carrier–to–Interference Ratio'', CIR). Dieser ist zumindest deutlich kleiner als bei&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_GSM|GSM]], das auf FDMA und TDMA basiert.
+
Since UMTS uses as multiple access method&nbsp; [[Modulation_Methods/Tasks_and_Classification#FDMA.2C_TDMA.2C_and_CDMA|"Code Division Multiple Access"]]&nbsp; (CDMA), all subscribers use the same frequency channel. This results in a relatively high interference power and a very low carrier-to-interference ratio (CIR). This is at least significantly smaller than for&nbsp; [[Examples_of_Communication_Systems/General_Description_of_GSM|"GSM"]], which is based on FDMA and TDMA.
  
Ein niedriges CIR kann die Übertragungsqualität erheblich beeinträchtigen, nämlich dann, wenn sich die Signale unterschiedlicher Teilnehmer destruktiv überlagern, was zu Informationsverlust führt.
+
A low CIR can significantly impair transmission quality, namely when signals from different subscribers destructively overlap, resulting in information loss.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Man unterscheidet zwei Arten von Interferenzen::}$&nbsp;
+
$\text{There are two types of interference:}$&nbsp;
  
*$\rm Intrazellinterferenz$&nbsp; entsteht durch die Verwendung des gleichen Frequenzkanals von mehreren Teilnehmern innerhalb der gleichen Zelle.
+
*$\rm Intracell interference$&nbsp; occurs when multiple subscribers within the same cell use the same frequency channel.
*$\rm Interzellinterferenz$&nbsp; tritt auf, wenn Teilnehmer verschiedener Zellen den gleichen Frequenzkanal benutzen.}}
+
*$\rm Intercell interference$&nbsp; occurs when subscribers of different cells use the same frequency channel}}.
  
  
[[File:P_ID1521__Bei_T_4_2_S10_v1.png|right|frame|Interzellinterferenz vs. Intrazellinterferenz]]  
+
[[File:P_ID1521__Bei_T_4_2_S10_v1.png|right|frame|Intercell interference vs. intracell interference]]  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
Die Grafik veranschaulicht beide Arten der Zellinterferenz.  
+
The graph illustrates both types of cell interference.  
*In der linken Zelle kommt es zu&nbsp; ''<u>Intra</u>zellinterferenzen'', wenn die beiden Frequenzen&nbsp; $f_1$&nbsp; und&nbsp; $f_2$&nbsp; identisch sind.
+
*In the left cell, there is&nbsp; ''<u>Intra</u> cell interference'' when the two frequencies&nbsp; $f_1$&nbsp; and&nbsp; $f_2$&nbsp; are identical.
  
  
*Dagegen gibt es&nbsp; ''<u>Inter</u>zellinterferenz'', wenn in den beiden rechten Funkzellen gleiche Frequenzen verwendet werden&nbsp; $(f_3 = f_4)$.  
+
*In contrast, there is&nbsp; ''<u>Inter</u> cell interference'' when the same frequencies are used in the two right radio cells&nbsp; $(f_3 = f_4)$.  
  
  
  
Intrazellinterferenzen sind wegen des geringen Abstands der Intrazellstörer meistens gravierender als Interzellinterferenzen, das heißt, sie bewirken ein deutlich kleineres&nbsp; ''Carrier–to–Interference Ratio'' (CIR).}}
+
Intracell interference is usually more severe than intercell interference because of the close spacing of intracell interferers, that is, it causes a much smaller&nbsp; ''carrier-to-interference ratio'' (CIR).}}
  
 
== What is cell breathing? ==  
 
== What is cell breathing? ==  
 
<br>
 
<br>
Um den Einfluss der Interferenzleistung auf die Übertragungsqualität zu begrenzen, wird bei UMTS die so genannte&nbsp; $\rm Zellatmung$&nbsp; eingesetzt. Diese lässt sich wie folgt beschreiben:
+
In order to limit the influence of the interference power on the transmission quality, so-called&nbsp; $\rm cell breathing$&nbsp; is used in UMTS. This can be described as follows:
*Nimmt die Anzahl der aktiven Teilnehmer und damit die aktuelle Interferenzleistung zu, so wird der Zellenradius verkleinert.
+
*If the number of active subscribers and thus the current interference power increases, the cell radius is reduced.
*Da nun weniger Teilnehmer in der Zelle senden, wird damit auch der störende Einfluss der Zellinterferenz geringer.
+
*Since fewer subscribers are now transmitting in the cell, the interfering influence of cell interference is thus also reduced.
*Für die Versorgung der am Rande einer ausgelasteten Zelle stehenden Teilnehmer springt dann die weniger belastete Nachbarzelle ein.
+
*The less loaded neighboring cell then steps in to supply the subscribers standing at the edge of a busy cell.
  
  
Eine Alternative zur Zellatmung ist, dass man die Gesamtsendeleistung innerhalb der Zelle verringert, was allerdings auch eine Reduzierung der Sende– und damit auch der Empfangsqualität bedeutet.
+
An alternative to cell breathing is to reduce the total transmit power within the cell, which, however, also means a reduction in the transmit quality and thus also the receive quality.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;
+
$\text{Example 3:}$&nbsp;
In der Grafik erkennt man, dass die Anzahl der aktiven Teilnehmer (pro Flächeneinheit) im Versorgungsgebiet von links nach rechts zunimmt.
+
In the graph, we can see that the number of active subscribers (per unit area) in the coverage area increases from left to right.
  
[[File:P_ID1522__Bei_T_4_2_S8b_v1.png|right|frame|Zur Verdeutlichung von "Zellatmung" bei UMTS]]  
+
[[File:P_ID1522__Bei_T_4_2_S8b_v1.png|right|frame|To illustrate "cell breathing" in UMTS]]  
  
*Lässt man die Zellengröße gleich, so gibt es in der Zelle mehr aktive Teilnehmer als vorher und dementsprechend nimmt die Qualität aufgrund der Intrazellinterferenzen deutlich ab.
+
*If one leaves the cell size the same, there are more active subscribers in the cell than before and accordingly the quality decreases significantly due to intracell interference.
*Verkleinert man dagegen die Zellengröße im gleichen Maße, wie die Teilnehmerzahl zunimmt, so sind in einer Zelle nicht mehr Teilnehmer aktiv als vorher (nach dieser Skizze:&nbsp; sieben) und die Qualität bleibt (in etwa) erhalten.}}
+
*If, on the other hand, the cell size is reduced to the same extent as the number of subscribers increases, there are no more active subscribers in a cell than before (according to this sketch:&nbsp; seven) and the quality remains (approximately) the same}}.
  
  
 
==Handover in UMTS ==  
 
==Handover in UMTS ==  
 
<br>
 
<br>
Um den Übergang zwischen verschiedenen Zellen für Mobilfunkteilnehmer möglichst unterbrechungsfrei erscheinen zu lassen, wird bei leitungsvermittelten UMTS–Diensten – wie auch bei GSM – ein Handover eingesetzt. Man unterscheidet bei UMTS zwei Arten:
+
In order to make the transition between different cells appear as uninterrupted as possible for mobile subscribers, a handover is used for circuit-switched UMTS services - as with GSM. A distinction is made between two types in UMTS:
*$\rm Hard \ Handover$: &nbsp; Hierbei wird zu einem bestimmten Zeitpunkt die Verbindung hart zu einem anderen "Node B" umgeschaltet. Diese Art von Handover geschieht im TDD–Modus während des Umschaltens zwischen Sender und Empfänger.
+
*$\rm Hard \ Handover$: &nbsp; Here the connection is switched hard to another "Node B" at a certain point in time. This type of handover happens in TDD mode during the switchover between transmitter and receiver.
*$\rm Soft \ Handover$: &nbsp; Dabei kann ein Mobiltelefon mit bis zu drei Basisstationen kommunizieren. Die Übergabe eines Teilnehmers von einem "Node B" zu einem anderen erfolgt allmählich, bis der Teilnehmer diesen Bereich endgültig verlässt. Man spricht in diesem Zusammenhang von&nbsp; ''Makrodiversität''.
+
*$\rm Soft \ Handover$: &nbsp; In this process, a mobile can communicate with up to three base stations. The handover of a subscriber from one "Node B" to another takes place gradually until the subscriber finally leaves this area. In this context, one speaks of&nbsp; ''macrodiversity''.
  
  
Die&nbsp; ''Downlink–Daten''&nbsp; werden im&nbsp; ''Radio Network Controller''&nbsp; (RNC) aufgeteilt&nbsp; (''Splitting''), über die beteiligten Basisstationen ausgestrahlt und in der Mobilstation wieder zusammengesetzt&nbsp; (''Rake Processing'').
+
The&nbsp; ''downlink data''&nbsp; is split in the&nbsp; ''Radio Network Controller''&nbsp; (RNC)&nbsp; (''splitting''), broadcast over the participating base stations and reassembled in the mobile station&nbsp; (''rake processing'').
  
Im&nbsp; ''Uplink''&nbsp; werden hingegen die gesendeten Daten von allen beteiligten Basisstationen empfangen. Die Zusammenlegung der Daten&nbsp; (''Soft Combining'')&nbsp; findet im RNC statt. Dieser leitet anschließend die Daten an das&nbsp; ''Core Network''&nbsp; (CN) weiter.
+
In the&nbsp; ''uplink''&nbsp; however, the transmitted data is received by all participating base stations. The soft combining of the data takes place in the RNC. This then forwards the data to the&nbsp; ''Core Network''&nbsp; (CN).
  
Man unterscheidet bei&nbsp; ''Soft Handover''&nbsp; drei Sonderfälle:
+
A distinction is made between&nbsp; ''Soft Handover''&nbsp; three special cases:
*Bei&nbsp; '''Softer Handover'''&nbsp; wird ein Teilnehmer über verschiedene Pfade der gleichen Basisstation versorgt.  
+
*With&nbsp; '''Soft Handover'''&nbsp; a subscriber is supplied via different paths of the same base station.  
*Dagegen geschieht bei&nbsp; '''Intra–RNC Handover'''&nbsp; die Versorgung der Teilnehmer über zwei verschiedene Basisstationen, die an denselben RNC angeschlossen sind. <br>Das&nbsp; ''Combining und Splitting''&nbsp; der Daten findet in dem gemeinsamen RNC statt.
+
*Intra-RNC handover, on the other hand, involves supplying the subscribers via two different base stations connected to the same RNC.  
*Ist der Teilnehmer in einem Gebiet, das von zwei benachbarten&nbsp; ''Radio Network Controllern''&nbsp; verwaltet wird, so liegt '''Inter–RNC Handover''' vor.  
+
<br>The&nbsp; ''combining and splitting''&nbsp; of the data takes place in the common RNC.
**Der erste RNC &nbsp; &rArr; &nbsp; ''Serving RNC''&nbsp; (SRNC) übernimmt die Kommunikation mit dem&nbsp; ''Core Network''&nbsp; und ist für&nbsp; ''Combining und Splitting''&nbsp; verantwortlich.  
+
*If the subscriber is in an area managed by two adjacent&nbsp; ''Radio Network Controllers''&nbsp; '''Inter-RNC Handover''' is present.  
**Der zweite RNC &nbsp; &rArr; &nbsp; ''Drift RNC''&nbsp; (DRNC) übernimmt die Kommunikation mit dem&nbsp; SRNC&nbsp; und mit dem von ihm verwalteten "Node B".
+
**The first RNC &nbsp; &rArr; &nbsp; ''Serving RNC''&nbsp; (SRNC) handles communications with the&nbsp; ''Core Network''&nbsp; and is responsible for&nbsp; ''Combining and Splitting''&nbsp;.  
 +
**The second RNC&nbsp; &rArr; &nbsp; ''Drift RNC''&nbsp; (DRNC) handles communication with the&nbsp; SRNC&nbsp; and with the ''Node B'' it manages.
  
  
[[File:P_ID1524__Bei_T_4_1_S10.png|right|frame|Zur Verdeutlichung verschiedener Handover&ndash;Strategien]]  
+
[[File:P_ID1524__Bei_T_4_1_S10.png|right|frame|To illustrate different handover strategies]]  
{{GraueBox|TEXT=
+
{{GraueBox|TEXT=
$\text{Beispiel 4:}$&nbsp;
+
$\text{Example 4:}$&nbsp;
Wir gehen von folgendem Szenario aus. Das Fahrzeug startet bei&nbsp; $\rm A$, bewegt sich nach rechts und passiert verschiedene Basisstationen, die jeweils mit einem&nbsp; ''Radio Network Controller''&nbsp; (RNC) verbunden sind. Die Buchstaben markieren verschiedene Fahrzeugpositionen.
+
We assume the following scenario. The vehicle starts at&nbsp; $\rm A$, moves to the right, and passes various base stations, each connected to a&nbsp; ''Radio Network Controller''&nbsp; (RNC). The letters mark different vehicle positions.
  
* Bei den Positionen&nbsp; $\rm A$,&nbsp; $\rm C$,&nbsp; $\rm E$,&nbsp; $\rm G$,&nbsp; $\rm I$&nbsp; und&nbsp; $\rm K$&nbsp; gibt es stets nur eine RNC–Verbindung, also auch&nbsp; ''kein Handover''.
+
* At positions&nbsp; $\rm A$,&nbsp; $\rm C$,&nbsp; $\rm E$,&nbsp; $\rm G$,&nbsp; $\rm I$&nbsp; and&nbsp; $\rm K$&nbsp; there is always only one RNC connection, so also&nbsp; ''no handover''.
* Bei&nbsp; $\rm B$,&nbsp; $\rm F$&nbsp; und&nbsp; $\rm J$&nbsp; ist das Fahrzeug mit zwei Basisstationen des gleichen  RNC in Kontakt &nbsp; &rArr; &nbsp; ''Intra–RNC Handover''.
+
*For&nbsp; $\rm B$,&nbsp; $\rm F$&nbsp; and&nbsp; $\rm J$&nbsp; the vehicle is in contact with two base stations of the same RNC &nbsp; &rArr; &nbsp; ''intra-RNC handover''.
*Bei&nbsp; $\rm D$&nbsp; und&nbsp; $\rm H$&nbsp; ist das Fahrzeug mit zwei Basisstationen zweier  RNCs in Kontakt &nbsp; &rArr; &nbsp; ''Inter–RNC Handover''.
+
*When&nbsp; $\rm D$&nbsp; and&nbsp; $\rm H$&nbsp; the vehicle is in contact with two base stations of two RNCs &nbsp; &rArr; &nbsp; ''Inter-RNC Handover''.
*Voraussetzung hierfür ist allerdings, dass die Koordination der beiden RNCs durch das&nbsp; ''Core Network''&nbsp; (CN) funkioniert. Ansonsten: &nbsp; ''Hard Handover''.}}
+
*However, this requires that the coordination of the two RNCs through the&nbsp; ''Core Network''&nbsp; (CN) is functioning. Otherwise: &nbsp; ''Hard Handover''}}
  
  
==IP–basierte Netze ==  
+
==IP based networks ==  
 
<br>
 
<br>
Mit dem UMTS Release 5 wurden unter Anderem&nbsp; '''IP–basierte Netze'''&nbsp; (''IP Core Networks'')&nbsp; eingeführt.  
+
UMTS Release 5 introduced, among other things, '''IP-based networks''' (''IP Core Networks'')&nbsp;.  
  
[[File:P_ID1525__Bei_T_4_2_S9_v1.png|right|frame|Netzarchitektur von UMTS &ndash; Release 5]]  
+
[[File:P_ID1525__Bei_T_4_2_S9_v1.png|right|frame|Network architecture of UMTS &ndash; Release 5]]  
*Dabei werden sowohl die Nutzdaten als auch die Kontrolldaten über ein internes IP–Netz übertragen.  
+
*In this case, both the user data and the control data are transmitted over an internal IP network.  
*Das bedeutet, dass sowohl leitungsvermittelte Dienste als auch paketvermittelte Dienste auf der Basis von IP–Protokollen erbracht werden.
+
*This means that both circuit-switched services and packet-switched services are provided on the basis of IP protocols.
  
  
Die Grafik zeigt diese Netzarchitektur in schematischer Weise. Im Vergleich zur ursprünglichen UMTS–Netzarchitektur (Release 99) wurde das Netz um folgende Knoten ergänzt:
+
The graphic shows this network architecture in schematic form. Compared with the original UMTS network architecture (Release 99), the following nodes have been added to the network:
*Das&nbsp; ''Media Gateway''&nbsp; ('''MGW''')&nbsp; ist für die Wiedergewinnung der in&nbsp; ''Voice–over–IP''&nbsp; (VoIP) konvertierten Sprachpakete in herkömmliche Sprachdaten verantwortlich.
+
*The&nbsp; ''Media Gateway''&nbsp; ('''MGW''')&nbsp; is responsible for recovering voice packets converted to&nbsp; ''Voice-over-IP''&nbsp; (VoIP) into conventional voice data.
*Der&nbsp; ''Home Subscriber Server''&nbsp; ('''HSS''')&nbsp; fasst die aus dem&nbsp; ''UMTS Release 99''&nbsp; bekannten Register&nbsp; '''HLR'''&nbsp; und&nbsp; '''VLR'''&nbsp; zusammen.
+
*The&nbsp; ''Home Subscriber Server''&nbsp; ('''HSS''')&nbsp; combines the registers known from&nbsp; ''UMTS Release 99''&nbsp;&nbsp; '''HLR'''&nbsp; and&nbsp; '''VLR'''&nbsp;.
*Der&nbsp; ''Call State Control Function''&nbsp; ('''CSCF''')–Knoten ist für die gesamte Steuerung des IP–Netzes in&nbsp; ''UMTS Release 5''&nbsp; zuständig und stellt die Kommunikation zwischen CSCF–Knoten und Teilnehmer über das&nbsp; ''Session Initiation Protocol''&nbsp; (SIP) her.
+
*The&nbsp; ''Call State Control Function''&nbsp; ('''CSCF''') node is responsible for the overall control of the IP network in&nbsp; ''UMTS Release 5'''&nbsp; and establishes the communication between CSCF node and subscriber via the&nbsp; ''Session Initiation Protocol''&nbsp; (SIP).
  
  
Es spricht vieles für den Einsatz einer solchen IP–basierten Netzarchitektur, da diese eine Reihe von Verbesserungen bereitstellt.  
+
There is much to be said for the use of such an IP-based network architecture, as it provides a number of improvements.  
  
Wesentliche&nbsp; '''Vorteile'''&nbsp; von IP–Netzen sind:
+
Major&nbsp; '''advantages'''&nbsp; of IP networks are:
*eine zukunftsweisende Alternative zur jetzigen Auslegung,
+
*a forward-looking alternative to the current design,
*eine preiswerte Routing–Technologie  &nbsp; ⇒ &nbsp; große Einsparungen bei der Vermittlungstechnik,
+
*a low-cost routing technology &nbsp; ⇒ &nbsp; large savings in switching equipment,
*große Flexibilität bei der Einführung neuer Dienste, und
+
*great flexibility in the introduction of new services, and
*eine leichte Implementierung von Netzüberwachungstechniken.
+
*an ease of implementation of network monitoring techniques.
  
  
Entscheidende&nbsp; '''Nachteile'''&nbsp; dieser Architektur sind derzeit (2011) allerdings auch:
+
However, crucial&nbsp; '''disadvantages'''&nbsp; of this architecture at present (2011) include:
*die mühsame Integration der Infrastruktur der zweiten Mobilfunkgeneration,
+
*the cumbersome integration of second generation cellular infrastructure,
*die Notwendigkeit von Übergangsknoten zur Konvertierung der Daten in so genannten Gateways, und
+
*the need for transition nodes to convert the data in so-called gateways, and.
*das Fehlen eines eindeutigen und zuverlässigen Sicherheitskonzeptes.
+
*the lack of a clear and reliable security concept.
  
  
==Aufgaben zum Kapitel ==
+
==Exercises for the chapter ==
 
<br>  
 
<br>  
[[Aufgaben:Aufgabe_4.3:_UMTS–Zugangsebene|Aufgabe 4.3: UMTS–Zugangsebene]]
+
[[Aufgaben:Exercise_4.3:_UMTS_Access_Level|Exercise 4.3: UMTS Access Level]]
  
[[Aufgaben:Aufgabe_4.4:_Zellulare_UMTS-Architektur|Aufgabe 4.4: Zellulare UMTS-Architektur]]
+
[[Aufgaben:Exercise_4.4:_Cellular_UMTS_Architecture|Exercise 4.4: Cellular UMTS Architecture]]
  
  
  
 
{{Display}}
 
{{Display}}

Revision as of 23:06, 31 January 2023


Basic units of the system architecture


In the architecture of UMTS networks, a distinction is made between four basic logical units. The interaction of these units enables the operation of the entire network.

Basic units of UMTS system architecture

In the graphic you can see:

  • $\rm Universal \ Subscriber \ Identity \ Module \ (USIM)$  - The USIM is a removable IC card that contains radio information and information for unique identification and authentication of the subscriber. It differs from the conventional SIM card in that it has enhanced security features, larger memory capacity, and an integrated microprocessor that is used to run programs.
  • $\rm Mobile \ Equipment \ (ME)$  - Equipped with a USIM card, the UMTS terminal provides both the radio interface for data transmission and the user controls. It differs from the common GSM mobile station in that it offers enhanced functionality, multimedia applications, and more complex and diverse services. In many cases, the designations  User Equipment  (UE) and  Terminal Equipment  (TE) can also be found.
  • $\rm Radio \ Access \ Network \ (RAN)$  - This refers to the fixed network infrastructure of UMTS, which is responsible for radio transmission and related tasks. The RAN contains the base stations  (Node B)  and the control nodes  (Radio Network Controller - RNC) that connect the RAN and the  Core Network .
  • $\rm Core \ Network \ (CN)$  - This represents the wide area network and is responsible for data transport. It contains switching facilities (SGSN, GGSN) to external networks and mobility and subscriber management databases (HLR, VLR). The  Core Network  also contains the network management facilities  (Operation and Maintenance Center - OMC) required to manage the overall network.

Domains and interfaces


Basic units of the UMTS system architecture

The units of the UMTS network listed on the last page are grouped into so-called  domains.

This refers to functional blocks that serve to standardize and study the functional units and interfaces within the UMTS network.

Two main categories of domains are distinguished, viz.

  • the  User Equipment Domain, and.
  • the  Infrastructure Domain.


The  $\rm User \ Equipment \ Domain$  contains all functions that enable access to the UMTS network, such as encryption functions for the transmission of data via the radio interface. One can divide this domain into two domains:

  • the  USIM Domain  - the SIM card is a part of this domain;
  • the  Mobile Equipment Domain  - it contains all the functions that a terminal device has.


These two domains are connected via the  Cu interface'  which includes the electrical and physical specifications as well as the protocol stack between the USIM card and the terminal device. This allows USIM cards from different network operators to operate with all terminal devices.

Another important interface is the  Uu interface, which establishes the radio link between the mobile station and the  Infrastructure Domain .


The  $\rm Infrastructure \ Domain$  is divided into the following two domains:

  • The  Access Network Domain  groups all base stations - called "Node B" in UMTS - and the functions of the  Radio Access Network  (RAN).
  • The  Core Network Domain  is responsible for the most error-free transmission and transport of user data.


These two domains are connected via an  Iu interface' . This interface is responsible for data switching between the  Access Network  and the  Core Network  and is the separation between the transport layer and the radio network layer.

The  Core Network Domain  can in turn be divided into three sub-domains:

  • The  Serving Network Domain  contains all functions and information necessary to access the UMTS network.
  • The  Home Network Domain  contains all functionalities that are performed in the home network of a (foreign) subscriber.
  • The  Transit Network Domain  is a so-called transit network. This only takes effect if database queries are to be performed in the subscriber's home network and the  Serving Network  is not directly connected to the  Home Network .


Access level architecture


UMTS networks support both circuit switching and packet switching:

$\text{Distinctive features:}$ 

  • In  circuit switching  (CS), the radio channel is assigned to the two communication partners for the entire duration of the connection until all information has been transmitted. Only then is the channel released.
  • In  Packet Switching  (PS), the participants cannot use the channel exclusively, but the data stream is divided in the transmitter into small data packets - each with the destination address in the header - and only then sent. The channel is shared by several participants


Structural design of a UMTS network

The two modes can also be recognized in the access level of the UMTS network in the  Core Network'  (CN), which is shown opposite.

The access layer can be divided into two main blocks:

The $\rm UMTS \ Terrestrial \ Radio \ Access \ Network \ (UTRAN)$  ensures radio transmission of data between the transport layer and the radio network layer.

The UTRAN includes the base stations and the control nodes, whose functions are mentioned below:

  • Node B  - as a UMTS base station is usually called - includes the antenna equipment as well as the CDMA receiver and is directly connected to the ME radio interfaces. Its tasks include data rate adaptation, data and channel (de)coding, interleaving, and modulation or demodulation. Each "Node B" can power one or more cells.
  • The  Radio Network Controller  (RNC) is responsible for controlling the base stations. Likewise, within the cells, it is responsible for call acceptance control, encryption and decryption, ATM switching, channel assignment, handover and power control.


The  $\rm Core \ Network \ (CN)$  is responsible for switching the data  (both  circuit-switched  and  packet-switched)  within the UMTS network.

For this purpose, it contains at  circuit-switched  the following hardware and software components:

  • The  Mobile Services Switching Center  (MSC) is responsible for call routing, localization, authentication, handover and encryption of subscriber data.
  • The  Home Location Register  (HLR) contains all subscriber data such as tariff model, telephone number, and the associated service-specific authorizations and keys.
  • The  Visitor Location Register  (VLR) contains location information about locally registered users and copies of records from its HLR. This data is dynamic:  As soon as the subscriber changes his location, this information is changed.


In  packet-switched transmission  there are the following facilities or registers:

  • The  Serving GPRS Support Node  (SGSN) is responsible for routing and authentication instead of MSC and VLR and keeps a local copy of the subscriber information.
  • At  Gateway GPRS Support Node  (GGSN) there are transitions to other packet data networks such as the Internet. Incoming packets are filtered by an integrated firewall and forwarded to the appropriate SGSN.
  • The  GPRS Register'  (GR) is part of the  Home Location Register  (HLR) and contains additional information needed for packet-switched transmission.


Physical channels


Physical channels are used for communication on the physical level of the radio interface and are processed within a base station ("Node B"). A distinction is made between  dedicated physical channels  and  shared physical channels.

Construction of the dedicated physical channels

The  $\rm dedicated \ physical \ channels$  are permanently assigned to individual communication partners. These include:

  • Dedicated Physical Data Channel  (DPDCH)  - This is a unidirectional uplink channel that transports payload and signaling data from higher layers.
  • Dedicated Physical Control Channel  (DPCCH)  - This control channel contains physical layer information for transmission control, line control commands, and transport format indicators, to name a few examples.
  • Dedicated Physical Channel  (DPCH)  - This channel includes the DPDCH and the DPCCH in the downlink and has a length of  $2560$  chips.


The diagram shows the structural design of the DPDCH (blue), of the DPCCH (red) as well as the enveloping DPCH.

  • In the DPCH, chips are transmitted in  $10 \ \rm ms$  exactly  $15 - 2560 = 38400$  resulting in chip rate  $3.84 \ \rm Mchip/s$ .
  • The user data in the DPDCH is split and per time slot - depending on the spreading factor  $J$  - between  $10$  bits  $($falls  $J = 256 )$  and  $640$ bits  $($falls  $J = 4)$  bits are transmitted.
  • In DPCCH, ten control bits are transmitted uniformly per time slot.


The table lists the  $\rm \ physical \ channels \ shared$  by all participants.

Shared channels in UMTS

The following describes the characteristics of some selected channels:

  • The CCPCH is a downlink channel with two subchannels. The P-CCPCH contains data necessary for operation within a radio cell, while the S-CCPCH contains data responsible for the paging procedure and for the transport of control data.
  • The PDSCH and the PUSCH are shared channels that can transport both payload and control data. The first is solely responsible for the downlink, the second for the uplink.
  • The PRACH controls the message transmission of the random access channel RACH, while the PCPCH is responsible for transporting data packets using the CDMA/CD method.


The following channels are responsible for the control and synchronization of the overall system:

  • The CPICH determines the affiliation of the mobile station to a base station.
  • The SCH is used for cell search and synchronization of the mobile station.
  • The AICH checks and determines the availability of the system.
  • The PICH is responsible for paging during subscriber localization.


Logical channels


The logical channels are located in the MAC (Medium Access Control) reference layer and are identified by the type of data transmitted.

Logical channels in UMTS

The logical channels compiled in the table can be divided into two classes, namely.

  • Control Channels  (Control Channels):
Control information  (BCCH)  as well as paging information  (PCCH)  are transported via the  Control Channels  (ending with CCH) . Subscriber-specific signaling data  (DCCH)  or transport information can also be exchanged between subscriber devices and the UTRAN  (CCCH)  over this.
  • Traffic Channels  (Traffic Channels):
Subscriber information is exchanged over the  Traffic Channels  (ending  TCH) . While the  DTCH  can be assigned individually to a mobile subscriber for user data transport, a  CTCH  is predominantly assigned to all or to a predefined subscriber group.


Transport channels


Transport channels are located in the physical layer of the ISO/OSI layer model. They

  • are characterized by the parameters of the data transmission (e.g. the data rate),
  • ensure the desired requirements regarding error protection mechanisms, and
  • determine the type of data transmission - the "HOW", so to speak.


Two classes of transport channels are distinguished, namely dedicated and shared transport channels.

The class of  $\rm dedicated \ transport \ channels$  (Dedicated Transport Channels - DTCH) includes the  Dedicated Channels  (DCH), which are permanently assigned to participants.

  • DCH  transports both user data and control data (handover data, measurement data, ...) to the higher layers, where they are then interpreted and processed.


The  $\rm shared \ transport \ channels$  (Common Transport Channels  - CTCH)  include, for example:

  • The  Broadcast Channel  (BCH)  is a downlink channel that distributes network operator-specific radio cell data  (for example:  Access Random Codes  for signaling a connection setup)  to the subscribers. It is characterized by its relatively high power and low data rate $($only  $\text{3.4 kbit/s)}$, in order to provide all users with the most error-free reception and high process gain.
  • The  Forward Access Channel  (FACH)  is a downlink channel, responsible for transporting control data. A cell may contain several FACH channels, one of which must have a low data rate to allow all users to evaluate its data.
  • The  Random Access Channel  (RACH)  is a unidirectional uplink channel. The subscriber can use it to express the desire to establish a radio link. It can also be used to transmit small amounts of data.
  • The  Common Packet Channel  (CPCH)  is a unidirectional uplink data channelfor packet-oriented services and an extension of the RACH channel.
  • The  Paging Channel  (PCH)  is a unidirectional downlink channel for locating a subscriber with data for the paging procedure.


Connection setup for UMTS

$\text{Example 1:}$  This diagram is intended to explain the interaction between the transport channels  RACH  and  FACH  with the logical channels  CCCH  and  DCCH  in a simple call setup.

Some explanations of this diagram:

  • A mobile subscriber  (Mobile Equipment, ME)  expresses a request for a connection setup. First, using the logical channel  CCCH  and the transport channel  RACH  a connection request is then sent via the UTRAN to the  Radio Network Controller  (RNC).
  • For this purpose, the  RRC protocol  (Radio Resource Control)  is used, which has the exercise of providing signaling between the subscriber and UTRAN/RNC.
  • The  Radio Network Controller  (RNC) responds to this request via the transport channel  FACH. Thereby the necessary control data for the connection setup is sent to the subscriber.
  • Only then the connection is actually established using the logical channel  DCCH 

.


Communication within the ISO/OSI layer model


Communication between the different layers of the ISO/OSI model is ensured by the logical, physical and transport channels presented on the last pages.

Image of the channels in UMTS

The graphic on the right shows the structure for both the uplink and downlink directions.

To guarantee functionality and data exchange within the overall model, these must be mapped to each other according to the graphic:

  • First, the logical channel is mapped to the transport channel,
  • then the mapping of the transport channel to a physical channel.


Excerpt from the ISO/OSI layer model
















The lower (left) graphic is intended to give an overall view of the structure of the three lowest layers of the ISO/OSI model and to convey the interactions of the different channel types.

Cellular architecture of UMTS


To enable a nationwide network with low transmission power and sufficient frequency economy, radio cells are also set up in UMTS, as in GSM. The radio cells in the UMTS network  $($carrier frequency  $\text{2 GHz)}$  are significantly smaller than in GSM  $($carrier frequency  $\text{900 MHz)}$, since the range of radio signals decreases with increasing frequency for the same transmission power.

The graphic shows the  cell structure  of UMTS. One recognizes from it a hierarchical structure and three types of radio cells:

Cell structure in UMTS
  • Macrocells  are the largest cells with a diameter of four to six kilometers. They allow relatively fast movements. For example, a movement speed up to a maximum of  $500\ \rm km/h$  is allowed if the data rate is  $144 \ \rm kbit/s$ . A macrocell can potentially overlay a large number of microcells and picocells.
  • Microcells  are much smaller than macrocells at one to two kilometers in diameter. They allow higher data rates up to  $384 \rm kbit/s$, but only slower movement speeds. For example, at the maximum data rate, the maximum allowed speed is only  $120\ \rm km/h$. A microcell overlays none, one, or a plurality of picocells.
  • Picocells  serve only very small areas about  $100$  meters in diameter, but very high data volumes. They are used in high density locations such as airports, stadiums, etc. Data rates up to  $2\ \rm Mbit/s$ are theoretically allowed.


Since UMTS uses as multiple access method  "Code Division Multiple Access"  (CDMA), all subscribers use the same frequency channel. This results in a relatively high interference power and a very low carrier-to-interference ratio (CIR). This is at least significantly smaller than for  "GSM", which is based on FDMA and TDMA.

A low CIR can significantly impair transmission quality, namely when signals from different subscribers destructively overlap, resulting in information loss.

$\text{There are two types of interference:}$ 

  • $\rm Intracell interference$  occurs when multiple subscribers within the same cell use the same frequency channel.
  • $\rm Intercell interference$  occurs when subscribers of different cells use the same frequency channel

.


Intercell interference vs. intracell interference

$\text{Example 2:}$  The graph illustrates both types of cell interference.

  • In the left cell, there is  Intra cell interference when the two frequencies  $f_1$  and  $f_2$  are identical.


  • In contrast, there is  Inter cell interference when the same frequencies are used in the two right radio cells  $(f_3 = f_4)$.


Intracell interference is usually more severe than intercell interference because of the close spacing of intracell interferers, that is, it causes a much smaller  carrier-to-interference ratio (CIR).

What is cell breathing?


In order to limit the influence of the interference power on the transmission quality, so-called  $\rm cell breathing$  is used in UMTS. This can be described as follows:

  • If the number of active subscribers and thus the current interference power increases, the cell radius is reduced.
  • Since fewer subscribers are now transmitting in the cell, the interfering influence of cell interference is thus also reduced.
  • The less loaded neighboring cell then steps in to supply the subscribers standing at the edge of a busy cell.


An alternative to cell breathing is to reduce the total transmit power within the cell, which, however, also means a reduction in the transmit quality and thus also the receive quality.

$\text{Example 3:}$  In the graph, we can see that the number of active subscribers (per unit area) in the coverage area increases from left to right.

To illustrate "cell breathing" in UMTS
  • If one leaves the cell size the same, there are more active subscribers in the cell than before and accordingly the quality decreases significantly due to intracell interference.
  • If, on the other hand, the cell size is reduced to the same extent as the number of subscribers increases, there are no more active subscribers in a cell than before (according to this sketch:  seven) and the quality remains (approximately) the same

.


Handover in UMTS


In order to make the transition between different cells appear as uninterrupted as possible for mobile subscribers, a handover is used for circuit-switched UMTS services - as with GSM. A distinction is made between two types in UMTS:

  • $\rm Hard \ Handover$:   Here the connection is switched hard to another "Node B" at a certain point in time. This type of handover happens in TDD mode during the switchover between transmitter and receiver.
  • $\rm Soft \ Handover$:   In this process, a mobile can communicate with up to three base stations. The handover of a subscriber from one "Node B" to another takes place gradually until the subscriber finally leaves this area. In this context, one speaks of  macrodiversity.


The  downlink data  is split in the  Radio Network Controller  (RNC)  (splitting), broadcast over the participating base stations and reassembled in the mobile station  (rake processing).

In the  uplink  however, the transmitted data is received by all participating base stations. The soft combining of the data takes place in the RNC. This then forwards the data to the  Core Network  (CN).

A distinction is made between  Soft Handover  three special cases:

  • With  Soft Handover  a subscriber is supplied via different paths of the same base station.
  • Intra-RNC handover, on the other hand, involves supplying the subscribers via two different base stations connected to the same RNC.


The  combining and splitting  of the data takes place in the common RNC.

  • If the subscriber is in an area managed by two adjacent  Radio Network Controllers  Inter-RNC Handover is present.
    • The first RNC   ⇒   Serving RNC  (SRNC) handles communications with the  Core Network  and is responsible for  Combining and Splitting .
    • The second RNC  ⇒   Drift RNC  (DRNC) handles communication with the  SRNC  and with the Node B it manages.


To illustrate different handover strategies

$\text{Example 4:}$  We assume the following scenario. The vehicle starts at  $\rm A$, moves to the right, and passes various base stations, each connected to a  Radio Network Controller  (RNC). The letters mark different vehicle positions.

  • At positions  $\rm A$,  $\rm C$,  $\rm E$,  $\rm G$,  $\rm I$  and  $\rm K$  there is always only one RNC connection, so also  no handover.
  • For  $\rm B$,  $\rm F$  and  $\rm J$  the vehicle is in contact with two base stations of the same RNC   ⇒   intra-RNC handover.
  • When  $\rm D$  and  $\rm H$  the vehicle is in contact with two base stations of two RNCs   ⇒   Inter-RNC Handover.
  • However, this requires that the coordination of the two RNCs through the  Core Network  (CN) is functioning. Otherwise:   Hard Handover


IP based networks


UMTS Release 5 introduced, among other things, IP-based networks (IP Core Networks) .

Network architecture of UMTS – Release 5
  • In this case, both the user data and the control data are transmitted over an internal IP network.
  • This means that both circuit-switched services and packet-switched services are provided on the basis of IP protocols.


The graphic shows this network architecture in schematic form. Compared with the original UMTS network architecture (Release 99), the following nodes have been added to the network:

  • The  Media Gateway  (MGW)  is responsible for recovering voice packets converted to  Voice-over-IP  (VoIP) into conventional voice data.
  • The  Home Subscriber Server  (HSS)  combines the registers known from  UMTS Release 99   HLR  and  VLR .
  • The  Call State Control Function  ('CSCF) node is responsible for the overall control of the IP network in  UMTS Release 5  and establishes the communication between CSCF node and subscriber via the  Session Initiation Protocol  (SIP).


There is much to be said for the use of such an IP-based network architecture, as it provides a number of improvements.

Major  advantages  of IP networks are:

  • a forward-looking alternative to the current design,
  • a low-cost routing technology   ⇒   large savings in switching equipment,
  • great flexibility in the introduction of new services, and
  • an ease of implementation of network monitoring techniques.


However, crucial  disadvantages  of this architecture at present (2011) include:

  • the cumbersome integration of second generation cellular infrastructure,
  • the need for transition nodes to convert the data in so-called gateways, and.
  • the lack of a clear and reliable security concept.


Exercises for the chapter


Exercise 4.3: UMTS Access Level

Exercise 4.4: Cellular UMTS Architecture