Processing math: 100%

Difference between revisions of "Examples of Communication Systems/xDSL Systems"

From LNTwww
Line 13: Line 13:
 
The basic elements of the xDSL standard are:
 
The basic elements of the xDSL standard are:
 
*the network termination  ,
 
*the network termination  ,
*a subscriber line  $\rm $  and
+
*a subscriber line  $\rm and
 
*the line termination  .
 
*the line termination  .
  

Revision as of 16:37, 5 March 2023

Reference models


Based on the following general ITU reference model, it can be quickly seen that xDSL is physically a pure access transmission technology that is only used in the local loop network area between the fiber termination point and the network termination at the end customer.

xDSL reference model of the ITU

The basic elements of the xDSL standard are:

  • the network termination  ,
  • a subscriber line  andthelinetermination\rm .Thereisalotoffreedomfornetworkoperatorsinimplementingthisreferencemodelinpractice.Whatallpreviousimplementationshaveincommonisthattheyuseexistingmetallicsubscriberlines.<brclear="all"><divclass="greybox">\text{Examples 1:}In an example, the configuration most frequently encountered in Germany is shown according to the graphic. To note: 

    [[File:P_ID1919__Bei_T_2_2_S1b_v2.png|right|frame|Reference model according to
    \text{1TR112_U-R2-V7.0 DTAG}]]InallxDSLvariantsdeployedtoday,thedataserviceconvertedinthemodemsiscombinedwiththetelephoneservice.Thisallowstransmissionovertheexistingtelephonenetwork.Thesplittersplitsthesignalonbothsidesofthesubscriberline.Animportantinterfaceisdesignated\rm U-R2(redmarking).ThiswasstandardizedinGermanyin2001byDeutscheTelekomAGinordertobeabletouseanymodemsonthesubscriberside.ThismeansthatthecustomerisnolongerdependentonhisprovidersxDSLmodem<divstyle="clear:both;"></div></div>.=="UNIQh1QINU"OverviewandcommonfeaturesofallxDSLsystems==<br>ThetechnicalrealizationofanxDSLsysteminvolvesmanysystemcomponents,whichcanbedistributedoverseverallocalities.Thereisawiderangeofrealizationoptions.Tosummarize:ThesystemsforADSLandVDSLshownbelowrepresentthemostcommonimplementationatthepresenttime(endof2009).<br>Datatransportattheprotocollevelisbasedonthe\rm ATMtechnology(AsynchronousTransferMode).Despitealargedataoverhead,ATMstilloffersadvantagesoverEthernetintermsofguaranteedqualityofservice(QoS),i.e.effectivebitrate,lowdelayandjitter.Ethernet,ontheotherhand,enablesveryhighdatatransmissionrates,especiallythroughthe"10Gbit/sEthernet"and"100Gbit/sEthernet"(MetroEthernet)variants.ATM,ontheotherhand,ismoresuitableforlowerdatarates.TherearecurrentlynumerousdiscussionsaboutwhetherATMshouldbereplacedby10Gbit/sEthernetinthecourseofNextGenerationNetwork.However,upgradingthebackbonefromATMtoEthernetrepresentsanotinconsiderableinvestment.<divclass="bluebox">\text{Summary:}Asmentionedinthechapter[[ExamplesofCommunicationSystems/GeneralDescriptionofDSL|"GeneralDescriptionofDSL"]],themostcommonlydeployedxDSLvariantsare.\rm ADSLand\rm ADSL2respectively\rm ADSL2+\rm VDSL(1)and\rm VDSL(2)definedinsuchawaythatsimultaneousoperationofPOTS(PlainOldTelephoneService)orISDN(IntegratedServicesDigitalNetwork)onthesamelineispossibleatanytime.Thisisalsothebasisofthefurtherdescriptions<divstyle="clear:both;"></div></div>.=="UNIQh2QINU"ADSLAsymmetricDigitalSubscriberLine==<br>ThephysicalnetworkterminationisinthelocalexchangeintheADSLmodem(ADSLTransmissionUnitCentralOffice,\rm ATU-C). Before that, in the  ''splitter''  the low-frequency telephony spectrum is still separated from the higher-frequency ADSL spectrum by low-pass and high-pass filtering.

    [[File:P_ID1918__Bei_T_2_2_S3_v2.png|center|frame|Modeling of an ADSL connection from the end customer to the local exchange]] 

    The graphic shows an ADSL connection from the end customer to the local exchange, which is described very briefly below. The reverse data connection paths are in each case mirror images.
    *The splitter forwards the telephone signals to the ISDN/POTS exchange and the ADSL signals to the  ''Digital Subscriber Line Access Multiplexer''  (DSLAM), in which the  ''ADSL Transmission Unit Central Office''  (ATU-C) is implemented as a plug-in card.
    *The DSLAM bundles many ADSL connections and forwards the data after decoding at the ATM level via optical fiber to the  ''ATM Service Access Multiplexer'' . This sends the data from all DSLAMs over the backbone to the  ''Broadband Remote Access Server''  (BBRAS).
    *The BBRAS terminates the point-to-point protocol data link and forwards the IP packets via routers to the destination. The backbone consists of optical components based on the SDH standard  (''Synchronous Digital Hierarchy'').
    *The splitter connected to the  ''telecommunications connection unit''  (TAE) separates the signals. The telephone signals are routed to the telephony terminals or to the NTBA, the ADSL signals to the modem  (''ADSL Transmission Unit Remote'',  ATU-R). The modem decodes and forwards the binary data to the connected terminals.


    During initialization of the ADSL connection,
    \rm ATU-Cand\rm ATU-Rperformasocalled"training"inwhichrelevantsystemparameterssuchasdatarate,interleavedandfastmode,etc.aredetermineddependingonthelineconditions.Theparametersnegotiatedinthisprocessareretaineduntilthenextcheckandsynchronization.Forthetransmissionofadministrativedata(overhead),32kbitperframearestaticallyreservedintheADSLsystems.=="UNIQh3QINU"ADSL2andADSL2plus==<br>ThesetwosystemvariantsarefurtherdevelopmentsofADSL:TheenhancedsystemvariantAsymmetricDigitalSubscriberLineTransceivers2\rm (ADSL2)wasspecifiedin2002withthepublicationofITURecommendationsG.992.3andG.992.4.2003wasfollowedbytheITUrecommendationG.992.5:ExtendedbandwidthADSL2\rm (ADSL2+).


    Compared to ADSL, the following changes occurred:
    *In ADSL2, the  ''Seamless Rate Adaption''  (SRA) was included in the standard. This allows transmission parameters to be changed during operation with time-variant channel quality without loss of synchronization.
    *For this purpose, ATU-C and ATU-R periodically check the ''Signal–to–Noise Ratio''  (SNR) of the transmission channels. If a channel in use deteriorates, the receiver notifies the transmitter of the new data rate and transmission level. After a subsequent  ''sync flag''  the parameters are adopted.
    *ADSL2 systems also offer a wide range of diagnostic options even without the modems having been synchronized, a feature that is particularly important for troubleshooting, error analysis and error correction.
    *In addition, ADSL2 provides the ability to reduce transmit levels when SNR is sufficient, thereby minimizing crosstalk and increasing throughput in the trunk cable. This  ''power cutback''  can be initiated not only by the DSLAM, but also by the ATU-R.
    *In ADSL2, the number of overhead bits is no longer fixed, but can vary between 4 and 32 kbit. This increase in the user data bit rate of up to 28 kbit/s per data frame is all the more important the longer the distance between the modem and the DSLAM.


    As a result, ADSL2 systems achieve a transmission rate of more than 8 Mbit/s (up to 12 Mbit/s) downstream and more than 800 kbit/s (up to 3.5 Mbit/s) upstream. 

    With ADSL2+, the transmission rate in the downstream is doubled again; the maximum rate is theoretically 25 Mbit/s.

     
    =='"`UNIQ--h-4--QINU`"'VDSL – Very–high–speed Digital Subscriber Line == 
    <br>
    In terms of the basic structure of their components, VDSL systems are identical to ADSL systems, with the only exception that the relocation of the splitter and the DSLAM from the local exchange to a cable branch makes the last section between the network operator and the customer - the so-called ''last mile'' - shorter. This measure was necessary because VDSL can only exploit its advantage - the greater transmission speed - over very short distances due to the attenuation of the higher frequencies, which increases sharply with line length.

    DSLAM and BBRAS are still connected via STM-1 interfaces. Therefore, the route between the local exchange and the cable branch must now also be laid with optical fiber.

    [[File:P_ID1920__Bei_T_2_2_S5_v1.png|center|frame|Modeling of a VDSL connection from the end customer to the local exchange]]

    A distinction is made between two alternative VDSL variants:
    *the
    \rm VDSL(1)systembasedon[[ModulationMethods/QuadratureAmplitudeModulation|"QAM"]](quadratureamplitudemodulation),whichispredominantlydeployedinAsia,and.the\rm VDSL(2)system based on  [[Modulation_Methods/Further_OFDM_Applications#A_brief_description_of_DSL_-_Digital_Subscriber_Line|"DMT"]]  (''Discrete Multitone Transmission'').


    VDSL(1) systems were never deployed in Germany because of their inadequate ability to provide audio/video, telephony and Internet (''triple play'') with sufficient quality of service. Instead, the VDSL(2) standard was established immediately:  Because of higher performance and greater range, the better quality of service as well as the reusability of ADSL(2+) infrastructure.

    <div class="bluebox">
    \text{Summary:}Followingareafewcharacteristicsofthe\rm VDSL(2)system:
    *VDSL(2) has achieved a maximum transmission rate of 50 to 100 Mbps since 2006, depending on the standard used.
    *The specified VDSL(2) transmission bandwidth of 30 MHz was considered the maximum reasonable bandwidth in 2009.
    *By 2011, with complementary measures such as  ''Dynamic Spectrum Management''  and ''Advanced Codes''  total transmission rates of up to 280 Mbit/s were expected for short line lengths (up to 300 meters).
    <div style="clear:both;"> 
    </div>
    </div>
     
         
    =='"`UNIQ--h-5--QINU`"'DSL internet access from the perspective of communication protocols ==   
    <br>
    Some xDSL modems offer an  ''Ethernet'' interface for connecting the data terminals and a transparent connection to the remote terminal, based on the  ''Internet Protocol''. To note:
    *This option is enabled by the  ''LAN Emulation''  (RFC2684) and the  ''ATM Adaption Layer Protocol''  (AAL5). The Ethernet data stream is converted to ATM for this purpose.
    *This eliminates the need to install ATM equipment and existing Ethernet hardware can be used, greatly simplifying xDSL configuration at the customer site.
    *The ATM connection extends at least as far as the  ''Broadband Remote Access Server'''  (BBRAS) and is converted there or continued directly, depending on the backbone data transmission system.


    [[File:P_ID1921__Bei_T_2_2_S6a_v3.png|right|frame|Modeling of an xDSL connection by using an xDSL modem]]
    The following graphics show the communication in an Internet connection according to the OSI model, where
    \rm xDSLisusedonlybetweenthe\rm xTU-Ronthecustomersideandthe\rm xTU-Contheproviderside(brownbackground).Forthefirstgraph,thexTURisassumedtobea\rm xDSL modem.
    <br clear="all">
    [[File:P_ID1922__Bei_T_2_2_S6b_v3.png|left|frame|Modeling of an xDSL connection through the use of an xDSL router]]
    <br><br>
    In the second graphic, a
    \rm xDSL routeris used as the xTU-R interface. 
    *This enables the connection of multiple terminals in a network with shared xDSL line. 
    *Here, instead of the modem, a router initializes the  ''Point-to-Point-Protocol-over-Ethernet'' connection.
    <br clear="all">
    =='"`UNIQ--h-6--QINU`"' Components of DSL Internet access ==   
    <br>
    Finally, necessary components for a DSL connection are listed. The graphic shows examples of these, mostly from Deutsche Telekom. 

    [[File:P_ID1923__Bei_T_2_2_S7_v1.png|right|frame|Necessary components to establish an xDSL connection]]
    \rm NTBA:ThecommonlyusedtermisNetworkTerminationforISDNBasicRateAccess.AttheGermanTelekom,thetermalsostandsforNetworkTerminatorBasicConnection.TasksoftheNTBAare:Withthehelpofaforkcircuitandechocancellation,thetwowireUK0interfaceontheprovidersideisconvertedintothefourwireS0interfaceonthesubscriberside.Inaddition,theNTBAmanagestheISDNcodeconversionfromtheMMS43code\rm (U_{K0}Bus)tothemodifiedAMIcode\rm (S_{0}Bus).\rm xTU-R:TheabbreviationstandsforxDSLTransceiveUnitRemoteanddenotesthesubscribersidexDSLunit.AtDeutscheTelekomalwaysknownforspecialnamingthetermnetworkterminationpointbroadbandaccess(NTBBAE)isalsocommon.DuetothewidespreaduseofEthernet,todaysxDSLmodemsandroutersusuallyhaveonlyoneEthernetportforconnectingdataterminalequipment.Originally,theywereusedforsubscribersideconnectionofATMdataterminals.Thus,thisunitmustalsoperformthefunctionofaLayer2bridgeinordertobeabletotransmitEthernetoverATMtotheBroadbandRemoteAccessServer(BBRAS)fortermination.\rm xDSL modem:Withthisfunctionalunit,thedataconnectionfrom/tothedataterminalisinitializedbyapointtopointprotocol(PPP)viaaPPPoverEthernetconnection(PPPoE)andterminatedbytheBBRAS.OnlydataterminaldevicesthatcanseparatelyestablishadataconnectionviaPPPareeligible.\rm xDSL modem router:ThisinitializesthedataconnectionviaPPPandenforcestheaddressesatIPlevel.Thisallowsmultipleterminalstobeconnectedandallowsinternaldataexchangebetweenthemwithouthavingtodialintothemseparately.\rm Splitter:Thisisbasicallyacombinationofhighpassandlowpasswiththreeinterfaces,whichhandlestheseparationofthehighfrequencyxDSLdatasignals(above138kHz)fromthelowfrequencyPOTSorISDNtelephonesignals(below120kHz),ortheircombination.Thisbroadbandaccessunit(BBAE)asitisalsocalledinTelekomjargonisnothingotherthanacrossoverunit.Thesumofthesignalsispresentonthesubscriberlineside,whilethexDSLdataandthePOTS/ISDNsignalsareseparatedfromeachotherbyasplitteronboththecustomerandprovidersides.\rm xTU-C:TheabbreviationstandsforxDSLTransceiveUnitCentraloffice.ItistheprovidersidexDSLunitandisusuallyimplementedasaprintedcircuitboardinsertion(linecard)fortheDSLAM.Itissometimesalsoreferredtoasnetworkterminationpointbroadbandaccess(NTBBAE).ThexTUCterminatesthephysicalretailxDSLsubscriberlines,modulatestheATMbitstreamonthesubscriberside,anddemodulatesthexDSLsignalontheproviderside.\rm DSLAM$:  The abbreviation stands for  Digital Subscriber Line Access Multiplexer. Experts also use the designation MXBBA for the DSLAM, which comes in various forms. In its simplest form, it terminates the physical subscriber lines with its xTU-C line cards. In an extended form, an ATM Service Access Multiplexer is also integrated in the DSLAM.
  • The task of the DSLAM is to bundle the ATM bit streams of the subscriber lines and to forward them in concentrated form in the multiplexing process via an STM-1 fiber interface into the provider network.
  • STM is an SDH transmission standard for multiplexing optical channels and stands for  Synchronous Transport Module. STM-1 allows a bit rate of up to 155.52 Mbit/s, STM-64 up to almost 10 Gbit/s.


Exercises for the chapter


"Exercise 2.2: xDSL Variants"

"Exercise 2.2Z: DSL Internet Connection"