Difference between revisions of "Aufgaben:Exercise 1.3: Calculating with Complex Numbers"
Line 67: | Line 67: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' Richtig sind also die<u> Lösungsvorschläge 1 und 2</u>: |
+ | *Entsprechend den Angaben gilt mit dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]]: | ||
− | <math>2 \cdot z_1 + z_2 = 2 \cdot \cos(45^{ \circ}) - 2{\rm j}\cdot \sin(45^{ \circ})- 2 \cdot \cos(45^{ \circ}) + 2{\rm j} \cdot\sin(45^{ \circ}) = 0.</math> | + | ::<math>2 \cdot z_1 + z_2 = 2 \cdot \cos(45^{ \circ}) - 2{\rm j}\cdot \sin(45^{ \circ})- 2 \cdot \cos(45^{ \circ}) + 2{\rm j} \cdot\sin(45^{ \circ}) = 0.</math> |
Der zweite Vorschlag ist ebenfalls richtig, da | Der zweite Vorschlag ist ebenfalls richtig, da | ||
− | <math>z_1^{\star} \cdot z_2 = 1 \cdot{\rm e}^{{\rm j} 45^{ \circ}} \cdot 2 \cdot{\rm e}^{{\rm j} 135^{ \circ}} = 2 \cdot{\rm e}^{{\rm j} 180^{ | + | ::<math>z_1^{\star} \cdot z_2 = 1 \cdot{\rm e}^{{\rm j} 45^{ \circ}} \cdot 2 \cdot{\rm e}^{{\rm j} 135^{ \circ}} = 2 \cdot{\rm e}^{{\rm j} 180^{ |
\circ}}= -2.</math> | \circ}}= -2.</math> | ||
Dagegen ist der dritte Vorschlag falsch. Die Division von <math>z_1</math> und <math>z_2</math> liefert: | Dagegen ist der dritte Vorschlag falsch. Die Division von <math>z_1</math> und <math>z_2</math> liefert: | ||
− | <math>\frac{z_1}{z_2} = \frac{{\rm e}^{-{\rm j} 45^{ \circ}}}{2 \cdot{\rm e}^{{\rm j} 135^{ \circ}}} = | + | ::<math>\frac{z_1}{z_2} = \frac{{\rm e}^{-{\rm j} 45^{ \circ}}}{2 \cdot{\rm e}^{{\rm j} 135^{ \circ}}} = |
0.5 \cdot{\rm e}^{-{\rm j} 180^{ | 0.5 \cdot{\rm e}^{-{\rm j} 180^{ | ||
\circ}}= -0.5.</math> | \circ}}= -0.5.</math> | ||
− | Die Multiplikation mit <math>z_3 = -{\rm j} </math> führt zum Ergebnis j/2, also zu einer rein imaginären Größe. | + | Die Multiplikation mit <math>z_3 = -{\rm j} </math> führt zum Ergebnis j/2, also zu einer rein imaginären Größe. |
− | '''2 | + | '''(2)''' Das Quadrat von <math>z_2</math> hat den Betrag <math>|z_2|^{2}</math> und die Phase <math>2 \cdot \phi_2</math>: |
− | <math>z_2^2 = 2^2 \cdot{\rm e}^{{\rm j} 270^{ \circ}}= 4 \cdot {\rm e}^{-{\rm j} 90^{ \circ}}=-4 \cdot {\rm j}.</math> | + | ::<math>z_2^2 = 2^2 \cdot{\rm e}^{{\rm j} 270^{ \circ}}= 4 \cdot {\rm e}^{-{\rm j} 90^{ \circ}}=-4 \cdot {\rm j}.</math> |
Entsprechend gilt für das Quadrat von <math>z_3</math>: | Entsprechend gilt für das Quadrat von <math>z_3</math>: | ||
− | <math>z_3^2 = (-{\rm j})^2 = -1.</math> | + | ::<math>z_3^2 = (-{\rm j})^2 = -1.</math> |
Somit ist <math>x_4 =\underline{ –1}</math> und <math>y_4 = \underline{–4}.</math> | Somit ist <math>x_4 =\underline{ –1}</math> und <math>y_4 = \underline{–4}.</math> | ||
− | '''3 | + | '''(3)''' Durch Anwendung der Divisionsregel erhält man: |
− | <math>z_5 = {1}/{z_2} = \frac{1}{2 \cdot{\rm e}^{{\rm j} 135^{ \circ}}}= 0.5 \cdot{\rm e}^{-{\rm j} 135^{ | + | ::<math>z_5 = {1}/{z_2} = \frac{1}{2 \cdot{\rm e}^{{\rm j} 135^{ \circ}}}= 0.5 \cdot{\rm e}^{-{\rm j} 135^{ |
\circ}} = 0.5 \cdot \left( \cos (- 135^{ \circ}) + {\rm j} \cdot \sin (- 135^{ | \circ}} = 0.5 \cdot \left( \cos (- 135^{ \circ}) + {\rm j} \cdot \sin (- 135^{ | ||
\circ})\right)</math> | \circ})\right)</math> | ||
− | <math>\Rightarrow x_5 = - {\sqrt{2}}/{4}\underline{= -0.354},\hspace{0.5cm} y_5 = x_5 \underline{= -0.354}.</math> | + | ::<math>\Rightarrow x_5 = - {\sqrt{2}}/{4}\underline{= -0.354},\hspace{0.5cm} y_5 = x_5 \underline{= -0.354}.</math> |
− | '''4 | + | ''''(4)''' Die angegeben Beziehung für <math>z_6</math> kann wie folgt umgeformt werden: <math>z_6^2 = {z_3} = {\rm e}^{-{\rm j} 90^{ \circ}}.</math> |
Man erkennt, dass es zwei Möglichkeiten für <math>z_6</math> gibt, die diese Gleichung erfüllen: | Man erkennt, dass es zwei Möglichkeiten für <math>z_6</math> gibt, die diese Gleichung erfüllen: | ||
− | <math>z_6 \hspace{0.1cm}{\rm (1.\hspace{0.1cm} L\ddot{o}sung)}\hspace{0.1cm} = \frac{z_2}{2} = 1 \cdot {\rm e}^{{\rm j} 135^{ \circ}} | + | ::<math>z_6 \hspace{0.1cm}{\rm (1.\hspace{0.1cm} L\ddot{o}sung)}\hspace{0.1cm} = \frac{z_2}{2} = 1 \cdot {\rm e}^{{\rm j} 135^{ \circ}} |
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{= 135^{ | \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{= 135^{ | ||
\circ}}, </math> | \circ}}, </math> | ||
− | <math>z_6 \hspace{0.1cm}{\rm (2.\hspace{0.1cm} L \ddot{o}sung)}\hspace{0.1cm} = {z_1} = 1 \cdot {\rm e}^{-{\rm j} 45^{ \circ}} | + | ::<math>z_6 \hspace{0.1cm}{\rm (2.\hspace{0.1cm} L \ddot{o}sung)}\hspace{0.1cm} = {z_1} = 1 \cdot {\rm e}^{-{\rm j} 45^{ \circ}} |
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{=-45^{ | \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{=-45^{ | ||
\circ}}.</math> | \circ}}.</math> | ||
− | '''5 | + | '''(5)''' Die komplexe Größe <math>z_2</math> lautet in Realteil/imaginärteildarstellung: |
− | <math>z_2 = x_2 + {\rm j} \cdot y_2 = -\sqrt{2} + {\rm j} \cdot\sqrt{2}.</math> | + | ::<math>z_2 = x_2 + {\rm j} \cdot y_2 = -\sqrt{2} + {\rm j} \cdot\sqrt{2}.</math> |
Damit ergibt sich für die komplexe Exponentialfunktion: | Damit ergibt sich für die komplexe Exponentialfunktion: | ||
− | <math>z_7 = {\rm e}^{-\sqrt{2} + {\rm j}\cdot \sqrt{2}}= {\rm e}^{-\sqrt{2} } \cdot \left( \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2})\right).</math> | + | ::<math>z_7 = {\rm e}^{-\sqrt{2} + {\rm j}\cdot \sqrt{2}}= {\rm e}^{-\sqrt{2} } \cdot \left( \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2})\right).</math> |
Mit <math>{\rm e}^{-\sqrt{2} } = 0.243, \hspace{0.2cm} \cos (\sqrt{2}) = 0.156, \hspace{0.2cm} \sin (\sqrt{2}) = 0.988</math> erhält man somit: | Mit <math>{\rm e}^{-\sqrt{2} } = 0.243, \hspace{0.2cm} \cos (\sqrt{2}) = 0.156, \hspace{0.2cm} \sin (\sqrt{2}) = 0.988</math> erhält man somit: | ||
− | <math>z_7 = 0.243 \cdot \left( 0.156 + {\rm j} \cdot 0.988\right) \hspace{0.15cm}\underline{= 0.038 + {\rm j} \cdot 0.24}.</math> | + | ::<math>z_7 = 0.243 \cdot \left( 0.156 + {\rm j} \cdot 0.988\right) \hspace{0.15cm}\underline{= 0.038 + {\rm j} \cdot 0.24}.</math> |
− | '''6 | + | '''(6)''' Ausgehend vom Ergebnis der Teilaufgabe (4) erhält man für <math>z_8</math>: |
− | <math>z_8 = {\rm e}^{-\sqrt{2} } \cdot \left( \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2}) + \cos (\sqrt{2}) - {\rm j} \cdot \sin | + | ::<math>z_8 = {\rm e}^{-\sqrt{2} } \cdot \left( \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2}) + \cos (\sqrt{2}) - {\rm j} \cdot \sin |
(\sqrt{2})\right) | (\sqrt{2})\right) | ||
− | = 2 \cdot {\rm e}^{-\sqrt{2} } \cdot \cos (\sqrt{2}) = 2 \cdot x_7 | + | = 2 \cdot {\rm e}^{-\sqrt{2} } \cdot \cos (\sqrt{2}) = 2 \cdot x_7 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x_8 \hspace{0.15cm}\underline{= 0.076}, \hspace{0.1cm}y_8\hspace{0.15cm}\underline{ = 0}.</math> |
− | |||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
[[Category:Aufgaben zu Signaldarstellung|^1. Grundbegriffe der Nachrichtentechnik^]] | [[Category:Aufgaben zu Signaldarstellung|^1. Grundbegriffe der Nachrichtentechnik^]] |
Revision as of 15:13, 13 December 2017
Nebenstehende Grafik zeigt einige Punkte in der komplexen Ebene, nämlich
- $$z_1 = {\rm e}^{-{\rm j} 45^{ \circ}}, $$
- $$z_2 = 2 \cdot{\rm e}^{{\rm j} 135^{ \circ}},$$
- $$z_3 = -{\rm j} .$$
Im Verlauf dieser Aufgabe werden noch folgende komplexe Größen betrachtet:
- $$z_4 = z_2^2 + z_3^2,$$
- $$z_5 = 1/z_2,$$
- $$z_6 = \sqrt{z_3},$$
- $$z_7 = {\rm e}^{z_2},$$
- $$z_8 = {\rm e}^{z_2} + {\rm e}^{z_2^{\star}}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Zum Rechnen mit komplexen Zahlen.
- Die Thematik wird auch im Lernvideo Rechnen mit komplexen Zahlen behandelt.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Entsprechend den Angaben gilt mit dem Satz von Euler:
- \[2 \cdot z_1 + z_2 = 2 \cdot \cos(45^{ \circ}) - 2{\rm j}\cdot \sin(45^{ \circ})- 2 \cdot \cos(45^{ \circ}) + 2{\rm j} \cdot\sin(45^{ \circ}) = 0.\]
Der zweite Vorschlag ist ebenfalls richtig, da
- \[z_1^{\star} \cdot z_2 = 1 \cdot{\rm e}^{{\rm j} 45^{ \circ}} \cdot 2 \cdot{\rm e}^{{\rm j} 135^{ \circ}} = 2 \cdot{\rm e}^{{\rm j} 180^{ \circ}}= -2.\]
Dagegen ist der dritte Vorschlag falsch. Die Division von \(z_1\) und \(z_2\) liefert:
- \[\frac{z_1}{z_2} = \frac{{\rm e}^{-{\rm j} 45^{ \circ}}}{2 \cdot{\rm e}^{{\rm j} 135^{ \circ}}} = 0.5 \cdot{\rm e}^{-{\rm j} 180^{ \circ}}= -0.5.\]
Die Multiplikation mit \(z_3 = -{\rm j} \) führt zum Ergebnis j/2, also zu einer rein imaginären Größe.
(2) Das Quadrat von \(z_2\) hat den Betrag \(|z_2|^{2}\) und die Phase \(2 \cdot \phi_2\):
- \[z_2^2 = 2^2 \cdot{\rm e}^{{\rm j} 270^{ \circ}}= 4 \cdot {\rm e}^{-{\rm j} 90^{ \circ}}=-4 \cdot {\rm j}.\]
Entsprechend gilt für das Quadrat von \(z_3\):
- \[z_3^2 = (-{\rm j})^2 = -1.\]
Somit ist \(x_4 =\underline{ –1}\) und \(y_4 = \underline{–4}.\)
(3) Durch Anwendung der Divisionsregel erhält man:
- \[z_5 = {1}/{z_2} = \frac{1}{2 \cdot{\rm e}^{{\rm j} 135^{ \circ}}}= 0.5 \cdot{\rm e}^{-{\rm j} 135^{ \circ}} = 0.5 \cdot \left( \cos (- 135^{ \circ}) + {\rm j} \cdot \sin (- 135^{ \circ})\right)\]
- \[\Rightarrow x_5 = - {\sqrt{2}}/{4}\underline{= -0.354},\hspace{0.5cm} y_5 = x_5 \underline{= -0.354}.\]
'(4) Die angegeben Beziehung für \(z_6\) kann wie folgt umgeformt werden: \(z_6^2 = {z_3} = {\rm e}^{-{\rm j} 90^{ \circ}}.\)
Man erkennt, dass es zwei Möglichkeiten für \(z_6\) gibt, die diese Gleichung erfüllen:
- \[z_6 \hspace{0.1cm}{\rm (1.\hspace{0.1cm} L\ddot{o}sung)}\hspace{0.1cm} = \frac{z_2}{2} = 1 \cdot {\rm e}^{{\rm j} 135^{ \circ}} \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{= 135^{ \circ}}, \]
- \[z_6 \hspace{0.1cm}{\rm (2.\hspace{0.1cm} L \ddot{o}sung)}\hspace{0.1cm} = {z_1} = 1 \cdot {\rm e}^{-{\rm j} 45^{ \circ}} \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \phi_6 \hspace{0.15cm}\underline{=-45^{ \circ}}.\]
(5) Die komplexe Größe \(z_2\) lautet in Realteil/imaginärteildarstellung:
- \[z_2 = x_2 + {\rm j} \cdot y_2 = -\sqrt{2} + {\rm j} \cdot\sqrt{2}.\]
Damit ergibt sich für die komplexe Exponentialfunktion:
- \[z_7 = {\rm e}^{-\sqrt{2} + {\rm j}\cdot \sqrt{2}}= {\rm e}^{-\sqrt{2} } \cdot \left( \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2})\right).\]
Mit \({\rm e}^{-\sqrt{2} } = 0.243, \hspace{0.2cm} \cos (\sqrt{2}) = 0.156, \hspace{0.2cm} \sin (\sqrt{2}) = 0.988\) erhält man somit:
- \[z_7 = 0.243 \cdot \left( 0.156 + {\rm j} \cdot 0.988\right) \hspace{0.15cm}\underline{= 0.038 + {\rm j} \cdot 0.24}.\]
(6) Ausgehend vom Ergebnis der Teilaufgabe (4) erhält man für \(z_8\):
- \[z_8 = {\rm e}^{-\sqrt{2} } \cdot \left( \cos (\sqrt{2}) + {\rm j} \cdot \sin (\sqrt{2}) + \cos (\sqrt{2}) - {\rm j} \cdot \sin (\sqrt{2})\right) = 2 \cdot {\rm e}^{-\sqrt{2} } \cdot \cos (\sqrt{2}) = 2 \cdot x_7 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x_8 \hspace{0.15cm}\underline{= 0.076}, \hspace{0.1cm}y_8\hspace{0.15cm}\underline{ = 0}.\]