Difference between revisions of "Aufgaben:Exercise 3.10: Maximum Likelihood Tree Diagram"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID1465__Dig_A_3_10_95.png|right|frame|Signale und Baumdiagramm]]
 
[[File:P_ID1465__Dig_A_3_10_95.png|right|frame|Signale und Baumdiagramm]]
Wie in der  [[Aufgaben:3.9_Unipolarer_Korrelationsempf%C3%A4nger|Aufgabe 3.9]]  betrachten wir die gemeinsame Entscheidung dreier Binärsymbole (Bits) mittels des Korrelationsempfängers.  
+
Wie in der  [[Aufgaben:Aufgabe_3.09:_Korrelationsempfänger_für_unipolare_Signalisierung|Aufgabe 3.9]]  betrachten wir die gemeinsame Entscheidung dreier Binärsymbole (Bits) mittels des Korrelationsempfängers.  
 
*Die möglichen Sendesignale  $s_0(t), \ \text{...} \ , \ s_7(t)$  seien bipolar.  
 
*Die möglichen Sendesignale  $s_0(t), \ \text{...} \ , \ s_7(t)$  seien bipolar.  
 
*In der Grafik sind die Funktionen  $s_0(t)$,  $s_1(t)$,  $s_2(t)$  und  $s_3(t)$  dargestellt.  
 
*In der Grafik sind die Funktionen  $s_0(t)$,  $s_1(t)$,  $s_2(t)$  und  $s_3(t)$  dargestellt.  

Revision as of 11:37, 7 March 2019

Signale und Baumdiagramm

Wie in der  Aufgabe 3.9  betrachten wir die gemeinsame Entscheidung dreier Binärsymbole (Bits) mittels des Korrelationsempfängers.

  • Die möglichen Sendesignale  $s_0(t), \ \text{...} \ , \ s_7(t)$  seien bipolar.
  • In der Grafik sind die Funktionen  $s_0(t)$,  $s_1(t)$,  $s_2(t)$  und  $s_3(t)$  dargestellt.
  • Die blauen Kurvenverläufe gelten dabei für rechteckförmige NRZ–Sendeimpulse.


Darunter gezeichnet ist das so genannte Baumdiagramm für diese Konstellation unter der Voraussetzung, dass das Signal  $s_3(t)$  gesendet wurde. Dargestellt sind hier im Bereich von  $0$  bis  $3T$  die Funktionen

$$i_i(t) = \int_{0}^{t} s_3(\tau) \cdot s_i(\tau) \,{\rm d} \tau \hspace{0.3cm}( i = 0, \ \text{...} \ , 7)\hspace{0.05cm}.$$
  • Der Korrelationsempfänger vergleicht die Endwerte  $I_i = i_i(3T)$  miteinander und sucht den größtmöglichen Wert  $I_j$.
  • Das zugehörige Signal  $s_j(t)$  ist dann dasjenige, das gemäß dem Maximum–Likelihood–Kriterium am wahrscheinlichsten gesendet wurde.


Anzumerken ist, dass der Korrelationsempfänger im allgemeinen die Entscheidung anhand der korrigierten Größen  $W_i = I_i \ - E_i/2$  trifft. Da aber bei bipolaren Rechtecken alle Sendesignale  $(i = 0, \ \text{...} \ , \ 7)$  die genau gleiche Energie

$$E_i = \int_{0}^{3T} s_i^2(t) \,{\rm d} t$$

aufweisen, liefern die Integrale  $I_i$  genau die gleichen Maximum–Likelihood–Informationen wie die korrigierten Größen  $W_i$.

Die roten Signalverläufe  $s_i(t)$  ergeben sich aus den blauen durch Faltung mit der Impulsantwort  $h_{\rm G}(t)$  eines Gaußtiefpasses mit der Grenzfrequenz  $f_{\rm G} \cdot T = 0.35$.

  • Jeder einzelne Rechteckimpuls wird verbreitert.
  • Die roten Signalverläufe führen bei Schwellenwertentscheidung zu Impulsinterferenzen.




Hinweis:



Fragebogen

1

Geben Sie die folgenden normierten Endwerte  $I_i/E_{\rm B}$  für Rechtecksignale (ohne Rauschen) an.

$I_0/E_{\rm B} \ = \ $

$I_2/E_{\rm B} \ = \ $

$I_4/E_{\rm B} \ = \ $

$I_6/E_{\rm B} \ = \ $

2

Welche Aussagen gelten bei Berücksichtigung eines Rauschenterms?

Das Baumdiagramm ist weiter durch Geradenstücke beschreibbar.
Ist  $I_3$  der maximale $I_i$–Wert, so entscheidet der Empfänger richtig.
Es gilt unabhängig von der Stärke der Störungen  $I_0 = I_6$.

3

Welche Aussagen gelten für die roten Signalverläufe (mit Impulsinterferenzen)?

Das Baumdiagramm ist weiter durch Geradenstücke beschreibbar.
Die Signalenergien  $E_i(i = 0, \ \text{...} \ , 7$)  sind unterschiedlich.
Es sind sowohl die Entscheidungsgrößen  $I_i$  als auch  $W_i$  geeignet.

4

Wie sollte der Intergrationsbereich  $(t_1 \ \text{...} \ t_2)$  gewählt werden?

Ohne Impulsinterferenzen (blau) sind  $t_1 = 0$  und  $t_2 = 3T$  bestmöglich.
Mit Impulsinterferenzen (rot) sind  $t_1 = 0$  und  $t_2 = 3T$  bestmöglich.


Musterlösung

(1)  Die linke Grafik zeigt das Baumdiagramm (ohne Rauschen) mit allen Endwerten. Grün hervorgehoben ist der Verlauf $i_0(t)/E_{\rm B}$ mit dem Endergebnis $I_0/E_{\rm B} = \ –1$, der zunächst linear bis $+1$ ansteigt – das jeweils erste Bit von $s_0(t)$ und $s_3(t)$ stimmen überein – und dann über zwei Bitdauern abfällt.

Baumdiagramm des Korrelationsempfängers

Die richtigen Ergebnisse lauten somit:

$$I_0/E_{\rm B}\hspace{0.15cm}\underline { = -1},$$
$$I_2/E_{\rm B} \hspace{0.15cm}\underline {= +1}, $$
$$I_4/E_{\rm B} \hspace{0.15cm}\underline {= -3}, $$
$$I_6/E_{\rm B}\hspace{0.15cm}\underline { = -1} \hspace{0.05cm}.$$


(2)  Richtig ist nur der zweite Lösungsvorschlag:

  • Bei Vorhandensein von (Rausch–) Störungen nehmen die Funktionen $i_i(t)$ nicht mehr linear zu bzw. ab, sondern haben einen Verlauf wie in der rechten Grafik dargestellt.
  • Solange $I_3 > I_{\it i≠3}$ ist, entscheidet der Korrelationsempfänger richtig.
  • Bei Vorhandensein von Störungen gilt stets $I_0 ≠ I_6$ im Gegensatz zum störungsfreien Baumdiagramm.


(3)  Auch hier ist nur die zweite Aussage zutreffend:

  • Da nun die möglichen Sendesignale $s_i(t)$ nicht mehr aus isolierten horizontalen Abschnitten zusammengesetzt werden können, besteht auch das Baumdiagramm ohne Störungen nicht aus Geradenstücken.
  • Da die Energien $E_i$ unterschiedlich sind – dies erkennt man zum Beispiel durch den Vergleich der Signale $s_0(t)$ und $s_2(t)$ – müssen für die Entscheidung unbedingt die korrigierten Größen $W_i$ herangezogen werden.
  • Die Verwendung der reinen Korrelationswerte $I_i$ kann bereits ohne Rauschstörungen zu Fehlentscheidungen führen.


(4)  Richtig ist die Antwort 1: Im Fall ohne Impulsinterferenzen (blaue Rechtecksignale) sind alle Signale auf den Bereich $0 \ ... \ 3T$ begrenzt.

  • Außerhalb stellt das Empfangssignal $r(t)$ reines Rauschen dar.
  • Deshalb genügt in diesem Fall auch die Integration über den Bereich $0 \ \text{...} \ 3T$.
  • Demgegenüber unterscheiden sich bei Berücksichtigung von Impulsinterferenzen (rote Signale) die Integranden $s_3(t) \cdot s_i(t)$ auch außerhalb dieses Bereichs.
  • Wählt man $t_1 = \ –T$ und $t_2 = +4T$, so wird deshalb die Fehlerwahrscheinlichkeit des Korrelationsempfängers gegenüber dem Integrationsbereich $0 \ \text{...} \ 3T$ weiter verringert.