Difference between revisions of "Aufgaben:Exercise 3.5: GMSK Modulation"

From LNTwww
m (Javier moved page Exercises:Exercise 3.5: GMSK Modulation to Exercise 3.5: GMSK Modulation: Text replacement - "Exercises:Exercise" to "Aufgaben:Exercise")
Line 11: Line 11:
 
The graphic illustrates the situation:
 
The graphic illustrates the situation:
  
*The digital message is represented by the amplitude coefficients  $a_{\mu} ∈ \{±1\}$  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)''.
+
*The digital message is represented by the amplitude coefficients  $a_{\mu} ∈ \{±1\}$  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)'''.
  
 
*The symmetrical rectangular pulse with duration  $T = T_{\rm B}$  (GSM bit duration) is dimensionless:
 
*The symmetrical rectangular pulse with duration  $T = T_{\rm B}$  (GSM bit duration) is dimensionless:
Line 19: Line 19:
 
*The Gaussian low pass is given by its frequency response or impulse response:
 
*The Gaussian low pass is given by its frequency response or impulse response:
 
:$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
 
:$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
:wobei die systemtheoretische Grenzfrequenz  $f_{\rm G}$  verwendet wird. In der GSM–Spezifikation wird aber die 3dB–Grenzfrequenz mit  $f_{\rm 3dB} = 0.3/T$  angegeben. Daraus kann  $f_{\rm G}$  direkt berechnet werden – siehe Teilaufgabe '''(2)'''.
+
:where the system theoretical cut-off frequency  $f_{\rm G}$  is used. In the GSM specification, however, the 3dB cut-off frequency is specified with  $f_{\rm 3dB} = 0.3/T$ . From this,  $f_{\rm G}$  can be calculated directly - see subtask '''(2)'''.
  
*Das Signal nach dem Gaußtiefpass lautet somit:
+
*The signal after the gauss low pass is thus
 
:$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
 
:$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
:Hierbei wird  $g(t)$  als ''Frequenzimpuls'' bezeichnet. Für diesen gilt:
+
Here  $g(t)$  is referred to as ''frequency pulse''. For this one:
 
:$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
 
:$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
  
*Mit dem tiefpassgefilterten Signal  $q_{\rm G}(t)$, der Trägerfrequenz  $f_{\rm T}$  und dem Frequenzhub  $\Delta f_{\rm A}$  kann somit für die Augenblicksfrequenz am Ausgang des FSK–Modulators geschrieben werden:
+
*With the low pass filtered signal  $q_{\rm G}(t)$, the carrier frequency  $f_{\rm T}$  and the frequency deviation  $\Delta f_{\rm A}$  can thus be written for the instantaneous frequency at the output of the FSK modulator::$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$
:$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$
 
  
  
Line 38: Line 37:
  
 
*This exercise belongs to the chapter   [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].  
 
*This exercise belongs to the chapter   [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].  
*Bezug genommen wird auch auf das Kapitel   [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]  im Buch „Beispiele von Nachrichtensystemen”.  
+
*Reference is also made to the chapter   [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]  in the book „Beispiele von Nachrichtensystemen”.  
 
   
 
   
*Verwenden Sie für Ihre Berechnungen die beispielhaften Werte  $f_{\rm T} = 900 \ \rm MHz$  und  $\Delta f_{\rm A} = 68 \ \rm kHz$.
+
*For your calculations use the exemplary values  $f_{\rm T} = 900 \ \ \rm MHz$  and  $\Delta f_{\rm A} = 68 \ \rm kHz$.
*Verwenden Sie zur Lösung der Aufgabe das Gaußintegral (einige Zahlenwerte sind in der Tabelle angegeben):
+
*Use the Gaussian integral to solve the task (some numerical values are given in the table)
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|Tabelle der Gaußschen Fehlerfunktion]]
+
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|some values of the Gaussian integral]]
 
:$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$
 
:$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$
 
<br clear=all>
 
<br clear=all>
Line 52: Line 51:
 
<quiz display=simple>
 
<quiz display=simple>
  
{In welchem Wertebereich kann die Augenblicksfrequenz&nbsp; $f_{\rm A}(t)$&nbsp; schwanken? Welche Voraussetzungen müssen dafür erfüllt sein?
+
{In what range of values can the instantaneous frequency&nbsp; $f_{\rm A}(t)$&nbsp; fluctuate? Which requirements must be met?
 
|type="{}"}
 
|type="{}"}
 
${\rm Max} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm} $ { 900.068 0.01% } $\ \rm MHz$
 
${\rm Max} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm} $ { 900.068 0.01% } $\ \rm MHz$
 
${\rm Min} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm} $ { 899.932 0.01% } $\ \rm MHz$
 
${\rm Min} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm} $ { 899.932 0.01% } $\ \rm MHz$
  
{Welche (normierte) systemtheoretische Grenzfrequenz des Gaußtiefpasses ergibt sich aus der Forderung&nbsp; $f_{\rm 3dB} \cdot T = 0.3$?
+
{Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement&nbsp; $f_{\rm 3dB} \cdot T = 0.3$?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }  
 
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }  
  
{Berechnen Sie den Frequenzimpuls&nbsp; $g(t)$&nbsp; unter Verwendung der Funktion&nbsp; $\phi (x)$. Wie groß ist der Impulswert&nbsp; $g(t = 0)$?
+
{Calculate the frequency pulse&nbsp; $g(t)$&nbsp; using the function&nbsp; $\phi (x)$. How large is the pulse value&nbsp; $g(t = 0)$?
 
|type="{}"}
 
|type="{}"}
 
$g(t = 0) \ = \ $ { 0.737 3% }  
 
$g(t = 0) \ = \ $ { 0.737 3% }  
  
{Welcher Signalwert ergibt sich für&nbsp; $q_{\rm G}(t = 3T)$&nbsp; mit&nbsp; $a_{3} = –1$&nbsp; sowie&nbsp; $a_{\mu \ne 3} = +1$? Wie groß ist die Augenblicksfrequenz&nbsp; $f_{\rm A}(t = 3T)$?
+
{Which signal value results for&nbsp; $q_{\rm G}(t = 3T)$&nbsp; with&nbsp; $a_{3} = -1$&nbsp; and&nbsp; $a_{\mu \ne 3} = +1$? What is the instantaneous frequency&nbsp; $f_{\rm A}(t = 3T)$?
 
|type="{}"}
 
|type="{}"}
 
$q_{\rm G}(t = 3T) \ = \ $ { -0.51822--0.42978 }  
 
$q_{\rm G}(t = 3T) \ = \ $ { -0.51822--0.42978 }  
  
{Berechnen Sie die Impulswerte&nbsp; $g(t = ±T)$&nbsp; des Frequenzimpulses.
+
{Calculate the pulse values&nbsp; $g(t = ±T)$&nbsp; of the frequency pulse
 
|type="{}"}
 
|type="{}"}
 
$g(t = ±T) \ = \ $ { 0.131 3% }  
 
$g(t = ±T) \ = \ $ { 0.131 3% }  
  
{Die Amplitudenkoeffizienten seien alternierend. Welcher maximale Betrag von&nbsp; $q_{G}(t)$&nbsp; ergibt sich? Berücksichtigen Sie&nbsp; $g(t ≥ 2 T) \approx 0$.
+
{The amplitude coefficients are alternating. What is the maximum amount of&nbsp; $q_{G}(t)$&nbsp;? Consider&nbsp; $g(t ≥ 2 T) \approx 0$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Max} \ |q_{\rm G}(t)| \ = \ $ { 0.475 3% }  
 
${\rm Max} \ |q_{\rm G}(t)| \ = \ $ { 0.475 3% }  
Line 84: Line 83:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Sind alle Amplitudenkoeffizienten $a_{\mu}$ gleich $+1$, so ist $q_{\rm R}(t) = 1$ eine Konstante. Damit hat der Gaußtiefpass keinen Einfluss und es ergibt sich $q_{\rm G}(t) = 1$.  
+
'''(1)'''&nbsp; If all amplitude coefficients $a_{\mu}$ are equal to $+1$, then $q_{\rm R}(t) = 1$ is a constant. Thus, the Gaussian low pass has no influence and $q_{\rm G}(t) = 1$ results.  
*Die maximale Frequenz ist somit
+
*The maximum frequency is thus
 
:$${\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
 
:$${\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
*Das Minimum der Augenblicksfrequenz
+
*The minimum instantaneous frequency
 
:$${\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
 
:$${\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
:ergibt sich, wenn alle Amplitudenkoeffizienten negativ sind. In diesem Fall ist $q_{\rm R}(t) = q_{\rm G}(t) = -1$.
+
is obtained when all amplitude coefficients are negative. In this case $q_{\rm R}(t) = q_{\rm G}(t) = -1$.
  
  
  
'''(2)'''&nbsp; Diejenige Frequenz, bei der die logarithmierte Leistungsübertragungsfunktion gegenüber $f = 0$ um $3 \ \rm dB$ kleiner ist, bezeichnet man als die 3dB–Grenzfrequenz.  
+
'''(2)'''&nbsp; The frequency at which the logarithmic power transfer function is $3 \ \rm dB$ less than $f = 0$ is called the 3dB cut-off frequency.  
*Dies lässt sich auch wie folgt ausdrücken:
+
*This can also be expressed as follows:
 
:$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
 
:$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
*Insbesondere gilt für den Gaußtiefpass wegen $H(f = 0) = 1$:
+
*In particular the Gauss low pass because of $H(f = 0) = 1$:
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
*Die numerische Auswertung führt auf $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.  
+
*The numerical evaluation leads to  $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.  
*Aus $f_{\rm 3dB} \cdot T = 0.3$ folgt somit $f_{\rm G} \cdot T \underline{\approx 0.45}$.
+
*{\f_{\rm 3dB} \cdot T = 0.3$ is followed by $f_{\rm G} \cdot T \underline{\approx 0.45}$.
 
 
  
  
Line 130: Line 128:
 
*Es ergeben sich also Impulsinterferenzen und man erhält:
 
*Es ergeben sich also Impulsinterferenzen und man erhält:
 
:$${\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$
 
:$${\rm Max} \hspace{0.12cm}[q_{\rm G}(t)] = g(t = 0) - 2 \cdot g(t = T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$
 +
 +
 +
 +
{{ML-Fuß}}
 +
 +
 +
 +
[[Category:Exercises for Mobile Communications|^3.3 Characteristics of GSM^]]
 +
 +
{{quiz-Header|Buchseite=Mobile Kommunikation/Die Charakteristika von GSM
 +
}}
 +
 +
[[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]]
 +
The modulation method used for GSM is&nbsp; ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where
 +
*the modulation index has the smallest value that just satisfies the orthogonality condition: &nbsp; $h = 0.5$ &nbsp; &rArr; &nbsp; ''Minimum Shift Keying'',
 +
*a Gaussian low pass with the impulse response&nbsp; $h_{\rm G}(t)$&nbsp; is inserted before the FSK modulator, with the aim of saving even more bandwidth.
 +
 +
 +
The graphic illustrates the situation:
 +
 +
*The digital message is represented by the amplitude coefficients&nbsp; $a_{\mu} ∈ \{±1\}$&nbsp; which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)'''.
 +
 +
*The symmetrical rectangular pulse with duration&nbsp; $T = T_{\rm B}$&nbsp; (GSM bit duration) is dimensionless:
 +
:$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
 +
*This results for the rectangular signal
 +
:$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
 +
*The Gaussian low pass is given by its frequency response or impulse response:
 +
:$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
 +
:where the system theoretical cut-off frequency&nbsp; $f_{\rm G}$&nbsp; is used. In the GSM specification, however, the 3dB cut-off frequency is specified with&nbsp; $f_{\rm 3dB} = 0.3/T$&nbsp;. From this,&nbsp; $f_{\rm G}$&nbsp; can be calculated directly - see subtask '''(2)'''.
 +
 +
*The signal after the gauss low pass is thus
 +
:$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
 +
Here&nbsp; $g(t)$&nbsp; is referred to as ''frequency pulse''. For this one:
 +
:$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
 +
 +
*With the low pass filtered signal&nbsp; $q_{\rm G}(t)$, the carrier frequency&nbsp; $f_{\rm T}$&nbsp; and the frequency deviation&nbsp; $\Delta f_{\rm A}$&nbsp; can thus be written for the instantaneous frequency at the output of the FSK modulator::$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$
 +
 +
 +
 +
 +
 +
 +
 +
''Notes:''
 +
 +
*This exercise belongs to the chapter&nbsp;  [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]].
 +
*Reference is also made to the chapter&nbsp;  [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]&nbsp; in the book „Beispiele von Nachrichtensystemen”.
 +
 +
*For your calculations use the exemplary values&nbsp; $f_{\rm T} = 900 \ \ \rm MHz$&nbsp; and&nbsp; $\Delta f_{\rm A} = 68 \ \rm kHz$.
 +
*Use the Gaussian integral to solve the task (some numerical values are given in the table)
 +
[[File:P_ID2226__Bei_A_3_4b.png|right|frame|some values of the Gaussian integral]]
 +
:$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$
 +
<br clear=all>
 +
 +
 +
 +
===Fragebogen===
 +
 +
<quiz display=simple>
 +
 +
{In what range of values can the instantaneous frequency&nbsp; $f_{\rm A}(t)$&nbsp; fluctuate? Which requirements must be met?
 +
|type="{}"}
 +
${\rm Max} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm} $ { 900.068 0.01% } $\ \rm MHz$
 +
${\rm Min} \  \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm} $ { 899.932 0.01% } $\ \rm MHz$
 +
 +
{Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement&nbsp; $f_{\rm 3dB} \cdot T = 0.3$?
 +
|type="{}"}
 +
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }
 +
 +
{Calculate the frequency pulse&nbsp; $g(t)$&nbsp; using the function&nbsp; $\phi (x)$. How large is the pulse value&nbsp; $g(t = 0)$?
 +
|type="{}"}
 +
$g(t = 0) \ = \ $ { 0.737 3% }
 +
 +
{Which signal value results for&nbsp; $q_{\rm G}(t = 3T)$&nbsp; with&nbsp; $a_{3} = -1$&nbsp; and&nbsp; $a_{\mu \ne 3} = +1$? What is the instantaneous frequency&nbsp; $f_{\rm A}(t = 3T)$?
 +
|type="{}"}
 +
$q_{\rm G}(t = 3T) \ = \ $ { -0.51822--0.42978 }
 +
 +
{Calculate the pulse values&nbsp; $g(t = ±T)$&nbsp; of the frequency pulse
 +
|type="{}"}
 +
$g(t = ±T) \ = \ $ { 0.131 3% }
 +
 +
{The amplitude coefficients are alternating. What is the maximum amount of&nbsp; $q_{G}(t)$&nbsp;? Consider&nbsp; $g(t ≥ 2 T) \approx 0$.
 +
|type="{}"}
 +
${\rm Max} \ |q_{\rm G}(t)| \ = \ $ { 0.475 3% }
 +
 +
 +
 +
</quiz>
 +
 +
===Sample solution===
 +
{{ML-Kopf}}
 +
 +
'''(1)'''&nbsp; If all amplitude coefficients $a_{\mu}$ are equal to $+1$, then $q_{\rm R}(t) = 1$ is a constant. Thus, the Gaussian low pass has no influence and $q_{\rm G}(t) = 1$ results.
 +
*The maximum frequency is thus
 +
:$${\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
 +
*The minimum instantaneous frequency
 +
:$${\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
 +
is obtained when all amplitude coefficients are negative. In this case $q_{\rm R}(t) = q_{\rm G}(t) = -1$.
 +
 +
 +
 +
'''(2)'''&nbsp; The frequency at which the logarithmic power transfer function is $3 \ \rm dB$ less than $f = 0$ is called the 3dB cut-off frequency.
 +
*This can also be expressed as follows:
 +
:$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
 +
*In particular the Gauss low pass because of $H(f = 0) = 1$:
 +
:$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 +
*The numerical evaluation leads to  $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.
 +
 +
  
  

Revision as of 08:47, 30 June 2020

Verschiedene Signale bei GMSK-Modulation

The modulation method used for GSM is  Gaussian Minimum Shift Keying, short GMSK. This is a special type of FSK (Frequency Shift Keying) with CP-FSK (Continuous Phase Matching), where

  • the modulation index has the smallest value that just satisfies the orthogonality condition:   $h = 0.5$   ⇒   Minimum Shift Keying,
  • a Gaussian low pass with the impulse response  $h_{\rm G}(t)$  is inserted before the FSK modulator, with the aim of saving even more bandwidth.


The graphic illustrates the situation:

  • The digital message is represented by the amplitude coefficients  $a_{\mu} ∈ \{±1\}$  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask (3).
  • The symmetrical rectangular pulse with duration  $T = T_{\rm B}$  (GSM bit duration) is dimensionless:
$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
  • This results for the rectangular signal
$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
  • The Gaussian low pass is given by its frequency response or impulse response:
$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
where the system theoretical cut-off frequency  $f_{\rm G}$  is used. In the GSM specification, however, the 3dB cut-off frequency is specified with  $f_{\rm 3dB} = 0.3/T$ . From this,  $f_{\rm G}$  can be calculated directly - see subtask (2).
  • The signal after the gauss low pass is thus
$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$

Here  $g(t)$  is referred to as frequency pulse. For this one:

$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
  • With the low pass filtered signal  $q_{\rm G}(t)$, the carrier frequency  $f_{\rm T}$  and the frequency deviation  $\Delta f_{\rm A}$  can thus be written for the instantaneous frequency at the output of the FSK modulator::$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$




Notes:

  • For your calculations use the exemplary values  $f_{\rm T} = 900 \ \ \rm MHz$  and  $\Delta f_{\rm A} = 68 \ \rm kHz$.
  • Use the Gaussian integral to solve the task (some numerical values are given in the table)
some values of the Gaussian integral
$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$



Fragebogen

1

In what range of values can the instantaneous frequency  $f_{\rm A}(t)$  fluctuate? Which requirements must be met?

${\rm Max} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.2cm} $

$\ \rm MHz$
${\rm Min} \ \big[f_{\rm A}(t)\big] \ = \hspace{0.28cm} $

$\ \rm MHz$

2

Which (normalized) system-theoretical cut-off frequency of the Gaussian low pass results from the requirement  $f_{\rm 3dB} \cdot T = 0.3$?

$f_{\rm G} \cdot T \ = \ $

3

Calculate the frequency pulse  $g(t)$  using the function  $\phi (x)$. How large is the pulse value  $g(t = 0)$?

$g(t = 0) \ = \ $

4

Which signal value results for  $q_{\rm G}(t = 3T)$  with  $a_{3} = -1$  and  $a_{\mu \ne 3} = +1$? What is the instantaneous frequency  $f_{\rm A}(t = 3T)$?

$q_{\rm G}(t = 3T) \ = \ $

5

Calculate the pulse values  $g(t = ±T)$  of the frequency pulse

$g(t = ±T) \ = \ $

6

The amplitude coefficients are alternating. What is the maximum amount of  $q_{G}(t)$ ? Consider  $g(t ≥ 2 T) \approx 0$.

${\rm Max} \ |q_{\rm G}(t)| \ = \ $


Sample solution

(1)  If all amplitude coefficients $a_{\mu}$ are equal to $+1$, then $q_{\rm R}(t) = 1$ is a constant. Thus, the Gaussian low pass has no influence and $q_{\rm G}(t) = 1$ results.

  • The maximum frequency is thus
$${\rm Max}\ [f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
  • The minimum instantaneous frequency
$${\rm Min}\ [f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$

is obtained when all amplitude coefficients are negative. In this case $q_{\rm R}(t) = q_{\rm G}(t) = -1$.


(2)  The frequency at which the logarithmic power transfer function is $3 \ \rm dB$ less than $f = 0$ is called the 3dB cut-off frequency.

  • This can also be expressed as follows:
$$\frac {|H(f = f_{\rm 3dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
  • In particular the Gauss low pass because of $H(f = 0) = 1$:
$$ H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
  • The numerical evaluation leads to $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.
  • {\f_{\rm 3dB} \cdot T = 0.3$ is followed by $f_{\rm G} \cdot T \underline{\approx 0.45}$. '''(3)'''  Der gesuchte Frequenzimpuls ${\rm g}(t)$ ergibt sich aus der Faltung von Rechteckfunktion $g_{\rm R}(t)$ mit der Impulsantwort $h_{\rm G}(t)$: :'"`UNIQ-MathJax54-QINU`"' *Mit der Substitution $u^{2} = 8π \cdot {f_{G}}^{2} \cdot \tau^{2}$ und der Funktion $\phi (x)$ kann man hierfür auch schreiben: :'"`UNIQ-MathJax55-QINU`"' *Für die Zeit $t = 0$ gilt unter Berücksichtigung von $\phi (-x) = 1 - \phi (x)$ und $f_{\rm G} \cdot T = 0.45$: :'"`UNIQ-MathJax56-QINU`"' '''(4)'''  Mit $a_{3} = +1$ würde sich $q_{\rm G}(t = 3 T) = 1$ ergeben. Aufgrund der Linearität gilt somit: :'"`UNIQ-MathJax57-QINU`"' '''(5)'''  Mit dem Ergebnis aus (3) und $f_{\rm G} \cdot T = 0.45$ erhält man: :'"`UNIQ-MathJax58-QINU`"' *Der Impulswert $g(t = -T)$ ist aufgrund der Symmetrie des Gaußtiefpasses genau so groß. '''(6)'''  Bei alternierender Folge sind aus Symmetriegründen die Beträge $|q_{\rm G}(\mu \cdot T)|$ bei allen Vielfachen der Bitdauer $T$ alle gleich. *Alle Zwischenwerte bei $t \approx \mu \cdot T$ sind dagegen kleiner. *Unter Berücksichtigung von $g(t ≥ 2T) \approx 0$ wird jeder einzelne Impulswert $g(0)$ durch den vorangegangenen Impuls mit $g(t = T)$ verkleinert, ebenso vom folgenden Impuls mit $g(t = -T)$. *Es ergeben sich also Impulsinterferenzen und man erhält: :'"`UNIQ-MathJax59-QINU`"' '"`UNIQ--html-00000004-QINU`"' [[Category:Exercises for Mobile Communications|^3.3 Characteristics of GSM^]] '"`UNIQ--html-00000005-QINU`"' [[Mobile Kommunikation/Die Charakteristika von GSM | Return to book]] '"`UNIQ--html-00000006-QINU`"' [[File:EN_Mob_A_3_5.png|right|frame|Verschiedene Signale bei GMSK-Modulation]] The modulation method used for GSM is  ''Gaussian Minimum Shift Keying'', short GMSK. This is a special type of FSK (''Frequency Shift Keying'') with CP-FSK (''Continuous Phase Matching''), where *the modulation index has the smallest value that just satisfies the orthogonality condition:   $h = 0.5$   ⇒   ''Minimum Shift Keying'', *a Gaussian low pass with the impulse response  $h_{\rm G}(t)$  is inserted before the FSK modulator, with the aim of saving even more bandwidth. The graphic illustrates the situation: *The digital message is represented by the amplitude coefficients  $a_{\mu} ∈ \{±1\}$  which are applied to a Dirac pulse. It should be noted that the sequence drawn in is assumed for the subtask '''(3)'''. *The symmetrical rectangular pulse with duration  $T = T_{\rm B}$  (GSM bit duration) is dimensionless: :'"`UNIQ-MathJax60-QINU`"' *This results for the rectangular signal :'"`UNIQ-MathJax61-QINU`"' *The Gaussian low pass is given by its frequency response or impulse response: :'"`UNIQ-MathJax62-QINU`"' :where the system theoretical cut-off frequency  $f_{\rm G}$  is used. In the GSM specification, however, the 3dB cut-off frequency is specified with  $f_{\rm 3dB} = 0.3/T$ . From this,  $f_{\rm G}$  can be calculated directly - see subtask '''(2)'''. *The signal after the gauss low pass is thus :'"`UNIQ-MathJax63-QINU`"' Here  $g(t)$  is referred to as ''frequency pulse''. For this one: :'"`UNIQ-MathJax64-QINU`"' *With the low pass filtered signal  $q_{\rm G}(t)$, the carrier frequency  $f_{\rm T}$  and the frequency deviation  $\Delta f_{\rm A}$  can thus be written for the instantaneous frequency at the output of the FSK modulator::'"`UNIQ-MathJax65-QINU`"' ''Notes:'' *This exercise belongs to the chapter  [[Mobile_Kommunikation/Die_Charakteristika_von_GSM|Die Charakteristika von GSM]]. *Reference is also made to the chapter  [[Beispiele_von_Nachrichtensystemen/Funkschnittstelle|Funkschnittstelle]]  in the book „Beispiele von Nachrichtensystemen”. *For your calculations use the exemplary values  $f_{\rm T} = 900 \ \ \rm MHz$  and  $\Delta f_{\rm A} = 68 \ \rm kHz$. *Use the Gaussian integral to solve the task (some numerical values are given in the table) [[File:P_ID2226__Bei_A_3_4b.png|right|frame|some values of the Gaussian integral]] :'"`UNIQ-MathJax66-QINU`"' <br clear="all"> ==='"`UNIQ--h-2--QINU`"'Fragebogen=== '"`UNIQ--quiz-00000007-QINU`"' ==='"`UNIQ--h-3--QINU`"'Sample solution=== '"`UNIQ--html-00000003-QINU`"' '''(1)'''  If all amplitude coefficients $a_{\mu}$ are equal to $+1$, then $q_{\rm R}(t) = 1$ is a constant. Thus, the Gaussian low pass has no influence and $q_{\rm G}(t) = 1$ results. *The maximum frequency is thus :'"`UNIQ-MathJax67-QINU`"' *The minimum instantaneous frequency :'"`UNIQ-MathJax68-QINU`"' is obtained when all amplitude coefficients are negative. In this case $q_{\rm R}(t) = q_{\rm G}(t) = -1$. '''(2)'''  The frequency at which the logarithmic power transfer function is $3 \ \rm dB$ less than $f = 0$ is called the 3dB cut-off frequency. *This can also be expressed as follows: :'"`UNIQ-MathJax69-QINU`"' *In particular the Gauss low pass because of $H(f = 0) = 1$: :'"`UNIQ-MathJax70-QINU`"' *The numerical evaluation leads to $f_{\rm G} \approx 1.5 \cdot f_{\rm 3dB}$.