Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Signal Representation/Signal classification"

From LNTwww
Line 131: Line 131:
  
 
*Pulse-shaped signals like the signal  x1(t)  in the above example, energy is always limited. Mostly, the signal values here are different from zero only for a finite period of time. In other words:  Such signals are often also time-limited.
 
*Pulse-shaped signals like the signal  x1(t)  in the above example, energy is always limited. Mostly, the signal values here are different from zero only for a finite period of time. In other words:  Such signals are often also time-limited.
*But even signals that are unlimited in time can have a finite energy. In later  [[Signal_Representation/Fouriertransformation_und_-rücktransformation|chapters]] you will find more information about energy limited and therefore aperiodic signals, for example the     [[Signal_Representation/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Gau.C3.9Fimpuls|Gaussian pulse]]  and the   [[Aufgaben:3.1_Spektrum_des_Exponentialimpulses|Exponential pulse]] .
+
*But even signals that are unlimited in time can have a finite energy. In later [[Signal_Representation/Fouriertransformation_und_-rücktransformation|chapters]] you will find more information about energy limited and therefore aperiodic signals, for example the   [[Signal_Representation/Einige_Sonderf%C3%A4lle_impulsartiger_Signale#Gau.C3.9Fimpuls|Gaussian pulse]]  and the  [[Aufgaben:3.1_Spektrum_des_Exponentialimpulses|Exponential pulse]] .
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
Definition: 
 
Definition: 
Ein Signal  x(t)  mit endlicher Leistung  Px  und dementsprechend unendlich großer Energie  (Ex)  bezeichnet man als  '''leistungsbegrenzt'''.}}
+
A signal  x(t)  with finite power  Px  and accordingly infinite energy  (Ex)  is called  '''power limited''.}}
  
  
*Alle leistungsbegrenzten Signale sind auch zeitlich unendlich weit ausgedehnt.  
+
*All power limited signals are also infinitely extended in time.  
*Beispiele hierfür sind das  [[Signal_Representation/Gleichsignal_-_Grenzfall_eines_periodischen_Signals|Gleichsignal]]  und  [[Signal_Representation/Harmonische_Schwingung|Harmonische Schwingungen]]  wie das Cosinussignal  x2(t)  im  $\text{Beispiel 3}$, die im Kapitel  [[Signal_Representation/Allgemeine_Beschreibung|Periodische Signale]] ausführlich beschrieben werden.  
+
*Examples are the  [[Signal_Representation/Gleichsignal_-_Grenzfall_eines_periodischen_Signals|direct current signal]]  and  [[Signal_Representation/Harmonische_Schwingung|harmonic oscillations]]  such as the cosine signal  x2(t)  in  $\text{Example 3}$, which are described in detail in chapter  [[Signal_Representation/Allgemeine_Beschreibung|Periodic Signals]].  
*Auch die meisten stochastischen Signale sind leistungsbegrenzt – siehe Buch  [[Stochastische Signaltheorie]].
+
*Even most stochastic signals are power limited - see book  [[Theory of Stochastic Signals]].
  
  
==Wertkontinuierliche und wertdiskrete Signale==
+
==Value-Continuous and Value-Discrete Signals==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
Definition:&nbsp;
 
Definition:&nbsp;
Ein Signal bezeichnet man als&nbsp; '''wertkontinuierlich''', wenn der entscheidende Signalparameter – zum Beispiel der Augenblickswert – alle Werte eines Kontinuums&nbsp; (beispielsweise eines Intervalls)&nbsp; annehmen kann. Sind für den Signalparameter dagegen nur abzählbar viele verschiedene Werte möglich, so ist das Signal&nbsp; ''wertdiskret''. Die Anzahl der möglichen Werte bezeichnet man als die&nbsp; '''Stufenzahl'''&nbsp; M oder als den Werteumfang.}}
+
A signal is called&nbsp; '''value-continuous''', if the decisive signal-parameter - for example the instantaneous value - can take all values of a continuum&nbsp; (for example of an interval)&nbsp;. In contrast, if only countable many different values are possible for the signal parameter, then the signal is&nbsp; ''value-discrete''. The number of possible values is called the&nbsp; '''number of steps'''&nbsp; M or the range of values.}}
  
  
*Bei den analogen Übertragungssystemen wird stets mit wertkontinuierlichen Signalen gearbeitet.  
+
*Analog transmission systems always work with value-continuous signals.  
*Bei Digitalsystemen sind dagegen die meisten Signale – aber nicht alle – wertdiskret.
+
*For digital systems, on the other hand, most but not all signals are value-discrete.
  
  
[[File:P_ID358_Sig_T_1_2_S4_a_neu.png|right|frame|Wertkontinuierliches und wertdiskretes Signal]]
+
[[File:P_ID358_Sig_T_1_2_S4_a_neu.png|right|frame|Value-continuous and value-discrete signal]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp;
+
$\text{Example 4:}$&nbsp;
Das obere Bild zeigt in blau einen Ausschnitt eines wertkontinuierlichen Signals&nbsp; x(t), das Werte zwischen&nbsp; ±8 V&nbsp; annehmen kann.  
+
The upper image shows in blue a section of a continuous-value signal&nbsp; x(t), which can take values between&nbsp; ±8 V&nbsp;.  
*In roter Farbe erkennt man das auf&nbsp; M=8&nbsp; Quantisierungsstufen diskretisierte Signal&nbsp; xQ(t)&nbsp; mit den möglichen Signalwerten&nbsp; ±1 V,&nbsp; ±3 V,&nbsp; ±5 V&nbsp; und&nbsp; ±7 V.  
+
*In red color you can see the signal&nbsp; M=8&nbsp; quantization steps discretized on&nbsp; xQ(t)&nbsp; with the possible signal values&nbsp; ±1 V,&nbsp; ±3 V,&nbsp; ±5 V&nbsp; and&nbsp; ±7 V.  
*Bei diesem Signal&nbsp; xQ(t)&nbsp; wurde der Augenblickswert als der entscheidende Signalparameter betrachtet.
+
*For this signal&nbsp; xQ(t)&nbsp; the instantaneous value was considered the decisive signal parameter.
  
  
[[File:P_ID831_Sig_T_1_2_S4_b_neu.png|left|frame|FSK-Signal - wertkontuierlich und trotzdem binär]]
+
[[File:P_ID831_Sig_T_1_2_S4_b_neu.png|left|frame|FSK-Signal - value-continuous and still binary]]
  
  
Line 173: Line 173:
  
  
Bei einem FSK-System&nbsp; (''Frequency Shift Keying'')&nbsp; ist dagegen die Augenblicksfrequenz der wesentliche Signalparameter.
+
In an FSK system&nbsp; (''Frequency Shift Keying'')&nbsp; on the other hand, the instantaneous frequency is the essential signal parameter.
  
Deshalb bezeichnet man auch das unten dargestellte Signal&nbsp; sFSK(t)&nbsp; als wertdiskret mit der Stufenzahl&nbsp; M=2&nbsp; und den möglichen Frequenzen&nbsp; 1 kHz&nbsp; und&nbsp; 5 kHz, obwohl der Augenblickswert wertkontinuierlich ist.}}
+
Therefore the signal&nbsp; sFSK(t)&nbsp; shown below is also called discrete with the step number&nbsp; M=2&nbsp; and the possible frequencies&nbsp; $1 \ \ \rm kHz$&nbsp; and&nbsp; $5 \ \ \rm kHz$, although the instantaneous value is continuous in value.}}
  
  

Revision as of 23:15, 31 August 2020

Deterministic and Stochastic Signals


In every communication system both deterministic and stochastic signals occur.

Definition:  A  deterministic signal  exists, if its time functions  x(t)  can be described completely in analytical form.


Since the time function x(t)  for all times  t is known and can be specified unambiguously, a spectral function X(f)  which can be calculated using the  Fourier series  or  Fourier transform .

Definition:  One refers to a  'stochastic signal   or to a  random signal, if the signal course  x(t)  is not - or at least not completely – describable in mathematical form. Such a signal cannot be predicted exactly for the future.


Example of a deterministic signal (top) and
a stochastic signal (bottom)

Example 1:  The graph shows time histories of a deterministic and a stochastic signal:

  • At the top a periodic square wave signal  x1(t)  with period duration  T0   ⇒   deterministic signal,
  • below a Gaussian noise signal  x2(t)  with the mean value  2 V   ⇒   stochastic signal.


For such a non-deterministic signal  x2(t)  no spectral function  X2(f)  can be specified, since Fourier series/Fourier transform requires the exact knowledge of the time function for all times  t 


Information-carrying signals are always of stochastic nature. Their description as well as the definition of suitable parameters is given in the book  Theory of Stochastic Signals.

However, the deterministic signals are also of great importance for communications engineering. Examples of this are:

  • test signals for the design of communication systems,
  • carrier signals for frequency multiplex systems, and
  • a pulse for sampling an analog signal or for time regeneration of a digital signal.


Causal and Non-Causal Signals


In communications engineering one often reckons with temporally unlimited signals; the definition range of the signal then extends from  t=  to  t=+.

In reality, however, there are no such signals, because every signal had to be switched on at some point. If one chooses - arbitrarily, but nevertheless meaningfully - the switch-on time  t=0, then one comes to the following classification:

Definition:  A signal x(t) is called  causal, if it does not exist for all times  t<0  or is identical zero. If this condition is not fulfilled, a  ‘’non-causal  signal (or system) exists.


In this book „Signal representation” mostly causal signals and systems are considered. This has the following reasons:

  • Non-causal signals (and systems) are mathematically easier to handle than causal ones. For example, the spectral function can be determined here by means of Fourier transformations and one does not need extensive knowledge of function theory as in the Laplace transformation.
  • Non-causal signals and systems describe the situation completely and correctly, if one ignores the problem of the switch-on process and is therefore only interested in the  steady state .


The description of causal signals and systems using the  Laplace Transform  is shown in the book   Linear Time-Invariant Systems.


Causal and non-causal system

Example 2:  You can see a causal transmission system in the upper graphic:

  • If a unit step function  x(t)  is applied to its input, then the output signal  y(t)  can only increase from zero to its maximum value after time  t=0 .
  • Otherwise the causal connection that the effect cannot begin before the cause would not be fulfilled.


The causality In the lower pictureis no longer given. As you can easily see in this example, an additional runtime of one millisecond is enough to change from the non-causal to the causal representation.


Energy Limited and Power Limited Signals


At this place first two important signal description quantities must be introduced, namely the  energy  and the  power.

  • In terms of physics, energy corresponds to work and has, for example, the unit "Ws".
  • The power is defined as "work per time" and therefore has the unit "W".


According to the elementary laws of electrical engineering, both values are dependent on the resistance  R . In order to eliminate this dependency, the resistance  R=1Ω  is often used as a basis in communications engineering. Then the following definitions apply:

Definition:  The  energy  of the signal  x(t)  is to calculate as follows:

Ex=lim


\text{Definition:} To calculate the (mean)  power ,  T_{\rm M}  must be divided by the timebefore the limit crossing:

P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M} } \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} x^2(t)\,{\rm d}t.

Where  T_{\rm M}  is the assumed measurement duration during which the signal is observed, symmetrically with respect to the time origin  (t = 0) . In general, this time interval must be chosen very large;  ideally  T_{\rm M}  should be towards infinity.


If   x(t)  denotes a stress curve with the unit  \text{V}, according to the above equations is for

  • the signal energy the unit  \text{V}^2\text{s},
  • the signal power the unit  \text{V}^2.


This statement also means:   In the above definitions the reference resistance  R=1\,\Omega  is already implicit.


Energy limited and power limited signal

\text{Example 3:}  Now the energy and power of two exemplary signals are calculated.

The upper graphic shows a rectangular pulse  x_1(t)  with amplitude  A  and duration  T.

  • The signal energy of this pulse is  E_1 = A^2 \cdot T.
  • For the signal power, division by  T_{\rm M}  and limit formation  (T_{\rm M} \to \infty)  the value  P_1 = 0.


For the cosine signal  x_2(t)  with amplitude  A  applies according to the sketch below:

  • The signal power is equal to&nbsp regardless of the frequency; P_2 = A^2/2.
  • The signal energy  E_2  (integral over power for all times) is infinite.


With  A = 4 \ {\rm V}  results for the power  P_2 = 8 \ {\rm V}^2. With the resistance of  R = 50 \,\,\Omega  this corresponds to the physical power  {8}/{50} \,\,{\rm V}\hspace{-0.1cm}/{\Omega}= 160\,\, {\rm mW}.


According to this example there are the following classification characteristics:

\text{Definition:}  A signal  x(t)  with finite energy  E_x  and infinitely small power  (P_x = 0)  is called  energy limited.


  • Pulse-shaped signals like the signal  x_1(t)  in the above example, energy is always limited. Mostly, the signal values here are different from zero only for a finite period of time. In other words:  Such signals are often also time-limited.
  • But even signals that are unlimited in time can have a finite energy. In later chapters you will find more information about energy limited and therefore aperiodic signals, for example the   Gaussian pulse  and the  Exponential pulse .


\text{Definition:}  A signal  x(t)  with finite power  P_x  and accordingly infinite energy  (E_x \to \infty)  is called  'power limited.



Value-Continuous and Value-Discrete Signals


\text{Definition:}  A signal is called  value-continuous, if the decisive signal-parameter - for example the instantaneous value - can take all values of a continuum  (for example of an interval) . In contrast, if only countable many different values are possible for the signal parameter, then the signal is  value-discrete. The number of possible values is called the  number of steps  M or the range of values.


  • Analog transmission systems always work with value-continuous signals.
  • For digital systems, on the other hand, most but not all signals are value-discrete.


Value-continuous and value-discrete signal

\text{Example 4:}  The upper image shows in blue a section of a continuous-value signal  x(t), which can take values between  \pm 8\ \rm V .

  • In red color you can see the signal  M = 8  quantization steps discretized on  x_{\rm Q}(t)  with the possible signal values  \pm 1\ \rm V\pm 3\ \rm V\pm 5\ \rm V  and  \pm 7\ \rm V.
  • For this signal  x_{\rm Q}(t)  the instantaneous value was considered the decisive signal parameter.


FSK-Signal - value-continuous and still binary





In an FSK system  (Frequency Shift Keying)  on the other hand, the instantaneous frequency is the essential signal parameter.

Therefore the signal  s_{\rm FSK}(t)  shown below is also called discrete with the step number  M = 2  and the possible frequencies  1 \ \ \rm kHz  and  5 \ \ \rm kHz, although the instantaneous value is continuous in value.


Zeitkontinuierliche und zeitdiskrete Signale


Bei den bisher betrachteten Signalen war der Signalparameter zu jedem beliebigen Zeitpunkt definiert. Man spricht dann von einem  zeitkontinuierlichen Signal.

\text{Definition:}  Bei einem  zeitdiskreten Signal  ist im Gegensatz dazu der Signalparameter nur zu den diskreten Zeitpunkten  t_\nu  definiert, wobei man diese Zeitpunkte meist äquidistant wählt:   t_\nu = \nu \cdot T_{\rm A}.

Da ein solches Signal beispielsweise durch Abtastung eines zeitkontinuierlichen Signals entsteht, bezeichnen wir  T_{\rm A}  als den  Abtastzeitabstand  und dessen Kehrwert  f_{\rm A} = 1/T_{\rm A}  als die  Abtastfrequenz.


Weiter gilt:

  • Ein zeitdiskretes Signal  x(t)  ist durch die  zeitliche Folge  \left \langle x_\nu \right \rangle  seiner Abtastwerte  vollständig bestimmt.
  • Diese Abtastwerte können dabei sowohl wertkontinuierlich als auch wertdiskret sein.
  • Die mathematische Beschreibung zeitdiskreter Signale erfolgt im Kapitel  Zeitdiskrete Signaldarstellung.


Zeitkontinuierliches und zeitdiskretes Signal

\text{Beispiel 5:}  Das zeitdiskrete Signal  x_{\rm A}(t)  erhält man nach Abtastung des oben dargestellten zeit- und wertkontinuierlichen Nachrichtensignals  x(t)  im Abstand  T_{\rm A}.

  • Der unten skizzierte Zeitverlauf  x_{\rm R}(t)  unterscheidet sich von der echten zeitdiskreten Darstellung  x_{\rm A}(t)  dadurch, dass die unendlich schmalen Abtastwerte  (mathematisch mit Diracimpulsen beschreibbar)  durch Rechteckimpulse der Dauer  T_{\rm A}  ersetzt sind.


  • Ein solches Signal kann nach obiger Definition ebenfalls als zeitdiskret bezeichnet werden.


Analogsignale und Digitalsignale


Analog- und Digitalsignale

\text{Beispiel 6:}  In der Grafik sind an einem Beispiel die folgenden Signaleigenschaften verdeutlicht:

  • „wertkontinuierlich” und „wertdiskret”, sowie
  • „zeitkontinuierlich” und „zeitdiskret”.



Daneben gelten noch folgende Festlegungen:

\text{Definition:}  Ist ein Signal sowohl wert– als auch zeitkontinuierlich, so spricht man auch von einem  Analogsignal. Solche Signale bilden einen kontinuierlichen Vorgang kontinuierlich ab. Beispiele hierfür sind Sprach–, Musik–, Bild– und Mess Signale.


\text{Definition:}  Ein  Digitalsignal  ist dagegen stets wert– und zeitdiskret und die darin enthaltene Nachricht besteht aus den Symbolen eines Symbolvorrats. Es kann beispielsweise ein abgetastetes und quantisiertes (sowie in irgendeiner Form codiertes) Sprach–, Musik– oder Bildsignal sein, aber auch ein Datensignal, wenn im Internet eine Datei von einem Server heruntergeladen wird.


Je nach Stufenzahl sind Digitalsignale auch noch unter anderen Namen bekannt, beispielsweise

  • mit M = 2:   binäres Digitalsignal oder  Binärsignal,
  • mit M = 3:   ternäres Digitalsignal oder  Ternärsignal,
  • mit M = 4:   quaternäres Digitalsignal oder  Quaternärsignal.


Das Lernvideo  Analoge und digitale Signale  fasst die in diesem Kapitel behandelten Klassifizierungsmerkmale in kompakter Weise zusammen.


Aufgaben zum Kapitel


Aufgabe 1.2: Signalklassifizierung

Aufgabe 1.2Z: Pulscodemodulation