Difference between revisions of "Signal Representation/The Convolution Theorem and Operation"

From LNTwww
Line 130: Line 130:
 
:$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
:$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
  
Noch einige Anmerkungen zur grafischen Faltung:
+
Some more remarks on graphic folding:
*Der Ausgangswert bei  $t = 0$  ergibt sich, indem man das Eingangssignal  $x(\tau)$  spiegelt, dieses gespiegelte Signal  $x(-\tau)$  mit der Impulsantwort  $h(\tau)$  multipliziert und darüber integriert.
+
*The output value at  $t = 0$  is obtained by mirroring the input signal  $x(\tau)$  this mirrored signal  $x(-\tau)$  is multiplied by the impulse response  $h(\tau)$  and integrated above it.
*Da es hier kein Zeitintervall gibt, bei dem sowohl die blaue Kurve  $h(\tau)$  und gleichzeitig auch die rot gestrichelte Spiegelung  $x(-\tau)$  ungleich Null ist, folgt daraus  $y(t=0)=0$.
+
*As there is no time interval here, where both the blue curve  $h(\tau)$  and at the same time also the red dashed mirroring  $x(-\tau)$  is not equal to zero, the result is  $y(t=0)=0$.
*Für jeden anderen Zeitpunkt  $t$ muss  das Eingangssignal verschoben werden    ⇒   $x(t-\tau)$, beispielsweise entsprechend der grün gestrichelten Kurve für  $t=T$.
+
*For any other time  $t$ the input signal must  be shifted   ⇒   $x(t-\tau)$, for example according to the green dotted curve for  $t=T$.
*Da in diesem Beispiel auch  $x(t-\tau)$  nur  $0$  und  $1$  sein kann, wird die Integration  $($allgemein von  $\tau_1$  bis  $\tau_2)$  sehr einfach und man erhält hier mit  $\tau_1 = 0$   und  $\tau_2 = t$ :
+
*As in this example also  $x(t-\tau)$  only  $0$  and  $1$  the integration  $($general from  $\tau_1$  to  $\tau_2)$  is very simple and you get here with  $\tau_1 = 0$   and  $\tau_2 = t$ :
 
:$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$
 
:$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$
  
Die Skizze gilt für  $t=T$  und führt zum Ausgangswert  $y(t=T) = 1 – 1/\text{e} \approx 0.632$.}}
+
This sketch is valid for   $t=T$  and results in the output value  $y(t=T) = 1 – 1/\text{e} \approx 0.632$.}}
  
  
 
==Clear Interpretation of The Convolution==
 
==Clear Interpretation of The Convolution==
 
<br>
 
<br>
Wir gehen von  einer Impulsantwort&nbsp; $h(t)$&nbsp; aus, die zunächst eine Millisekunde lang konstant ist und dann bis zur Zeit&nbsp; $t = 3 \,\text{ms}$&nbsp; linear bis auf Null abfällt.  
+
We assume an impulse response&nbsp; $h(t)$&nbsp; which is first constant for one millisecond and then decreases linearly to zero until &nbsp; $t = 3 \,\text{ms}$&nbsp;.  
*Legt man an den Eingang dieses Tiefpassfilters einen Diracimpuls&nbsp; $K_0 \cdot \delta(t)$&nbsp; an, so ist das Ausgangssignal&nbsp; $y(t)$&nbsp; formgleich mit der Impulsantwort&nbsp; $h(t)$. Der Sachverhalt ist im Bild rot dargestellt.
+
*If a Dirac impulse&nbsp; $K_0 \cdot \delta(t)$&nbsp; is applied to the input of this low-pass filter, the output signal&nbsp; $y(t)$&nbsp; has the same shape as the impulse response&nbsp; $h(t)$. The situation is shown in red in the picture.
*Ein um&nbsp; $T= 1 \,\text{ms}$&nbsp; späterer Diracimpuls mit Gewicht&nbsp; $K_1 > K_0$&nbsp; hat das blau gezeichnete Ausgangssignal&nbsp; $y_1(t)$&nbsp; zur Folge, das gegenüber dem roten Signal verzögert und in der Amplitude vergrößert ist.
+
*An &nbsp; $T= 1 \,\text{ms}$&nbsp; shifted  Dirac impulse with weight&nbsp; $K_1 > K_0$&nbsp; results in the output signal&nbsp; $y_1(t)$&nbsp; which is delayed with respect to the red signal and increased in amplitude.
  
  
 
[[File:P_ID524__Sig_T_3_4_S5_rah.png|right|frame|On a Clear Interpretation of The Convolution]]
 
[[File:P_ID524__Sig_T_3_4_S5_rah.png|right|frame|On a Clear Interpretation of The Convolution]]
Wir betrachten nun das aus sieben verschieden gewichteten und verschobenen Diracimpulsen bestehende Eingangssignal
+
We now consider the input signal consisting of seven differently weighted and shifted Dirac impulses
 
   
 
   
 
:$$x( t ) = \sum\limits_{n = 0}^6 {K_n  \cdot \delta ( {t - n \cdot T} ),}$$
 
:$$x( t ) = \sum\limits_{n = 0}^6 {K_n  \cdot \delta ( {t - n \cdot T} ),}$$
  
das als zeitdiskrete Näherung eines zeitkontinuierlichen Signals aufgefasst werden kann.  
+
which can be understood as a time discrete approximation of a time continuous signal.  
  
*Das Signal am Ausgang des linearen Systems ist die Summe der sieben im Bild verschiedenfarbig markierten Teilsignale:
+
*The signal at the output of the linear system is the sum of the seven partial signals marked with different colors in the image:
 
   
 
   
 
:$$y( t ) = \sum\limits_{n = 0}^6 {K_n  \cdot h( {t - n \cdot T} ).}$$
 
:$$y( t ) = \sum\limits_{n = 0}^6 {K_n  \cdot h( {t - n \cdot T} ).}$$
  
*Wir betrachten nun beispielhaft den Signalwert zum Zeitpunkt&nbsp; $t = 4.5T$&nbsp; (siehe Strichpunktierung):
+
*We now look at the signal value at time&nbsp; $t = 4.5T$&nbsp; (see dotted lines):
 
   
 
   
 
:$$y( {t = 4.5T} ) = K_2  \cdot h( {2.5T} ) + K_3  \cdot h(1.5 T ) + K_4  \cdot h( 0.5 T ).$$
 
:$$y( {t = 4.5T} ) = K_2  \cdot h( {2.5T} ) + K_3  \cdot h(1.5 T ) + K_4  \cdot h( 0.5 T ).$$
  
Der Signalwert $y(t=4.5T)$ wird somit nur durch die Eingangssignalwerte&nbsp; $K_2$,&nbsp; $K_3$&nbsp; und&nbsp; $K_4$&nbsp; bestimmt, und zwar ist der Einfluss
+
The signal value $y(t=4.5T)$ is thus only determined by the input signal values&nbsp; $K_2$,&nbsp; $K_3$&nbsp; and&nbsp; $K_4$&nbsp; the influence
*von&nbsp; $K_4$&nbsp; wegen&nbsp; $h(0.5T) = 1$&nbsp; am stärksten,
+
*from &nbsp; $K_4$&nbsp; due to&nbsp; $h(0.5T) = 1$&nbsp; at the peak,
*von&nbsp; $K_3$&nbsp; wegen&nbsp; $h(1.5T) = 0.75$&nbsp; weniger stark,
+
*from&nbsp; $K_3$&nbsp; due to&nbsp; $h(1.5T) = 0.75$&nbsp; less  strong,
*von&nbsp; $K_2$&nbsp; wegen&nbsp; $h(2.5T) = 0.25$&nbsp; am geringsten.
+
*from&nbsp; $K_2$&nbsp; due to&nbsp; $h(2.5T) = 0.25$&nbsp;the lowest.
  
  
Line 173: Line 173:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition: }$&nbsp;
 
$\text{Definition: }$&nbsp;
Man nennt die  folgende Verknüpfung der Zeitfunktionen&nbsp; $x_1(t)$&nbsp; und&nbsp; $x_2(t)$&nbsp; die&nbsp; '''Faltung'''&nbsp; und stellt diesen Funktionalzusammenhang mit einem Stern dar:
+
The following relation of time functions is called&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; the&nbsp; '''convolution'''&nbsp; and represents this functional relation with a star:
 
   
 
   
 
:$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  ) }  \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
:$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  ) }  \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  
Daraus ergibt sich die folgende Fourierkorrespondenz:
+
This results in the following Fourier correspondence:
 
   
 
   
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$}}
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$}}
Line 184: Line 184:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Proof: }$&nbsp;
 
$\text{Proof: }$&nbsp;
Die Fourierintegrale der Funktionen&nbsp; $x_1(t)$&nbsp; und&nbsp; $x_2(t)$&nbsp; lauten mit veränderten Integrationsvariablen:
+
The Fourier integrals of functions&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; are with modified integration variables:
 
   
 
   
 
:$$X_1 ( f ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\tau }\hspace{0.1cm} {\rm{d } }\tau{\rm{,} }$$
 
:$$X_1 ( f ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\tau }\hspace{0.1cm} {\rm{d } }\tau{\rm{,} }$$
Line 190: Line 190:
 
:$$X_2 ( f ) = \int_{ - \infty }^{ + \infty } {x_2 ( {t'} ) }  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft\hspace{0.05cm}'}\hspace{0.1cm} {\rm{d} }t\hspace{0.05cm}'{\rm{.} }$$
 
:$$X_2 ( f ) = \int_{ - \infty }^{ + \infty } {x_2 ( {t'} ) }  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft\hspace{0.05cm}'}\hspace{0.1cm} {\rm{d} }t\hspace{0.05cm}'{\rm{.} }$$
 
   
 
   
*Bildet man das Produkt der Spektralfunktionen, so erhält man:
+
*If you form the product of the spectral functions, you get
 
   
 
   
 
:$$X_1 (f) \cdot X_2 (f) = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {x_1 ( \tau  )  \hspace{0.05 cm}\cdot } }\hspace{0.05 cm} x_2 ( {t\hspace{0.05cm}'} ) \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\left( {\tau  + t\hspace{0.05cm}'} \right) }\hspace{0.1cm} {\rm d} \tau \hspace{0.1cm}{\rm d}t\hspace{0.05cm}'{\rm{.} }$$
 
:$$X_1 (f) \cdot X_2 (f) = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {x_1 ( \tau  )  \hspace{0.05 cm}\cdot } }\hspace{0.05 cm} x_2 ( {t\hspace{0.05cm}'} ) \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\left( {\tau  + t\hspace{0.05cm}'} \right) }\hspace{0.1cm} {\rm d} \tau \hspace{0.1cm}{\rm d}t\hspace{0.05cm}'{\rm{.} }$$
  
*Mit der Substitution&nbsp; $t = \tau + t\hspace{0.05cm}'$&nbsp; ergibt sich:
+
*With the substitution&nbsp; $t = \tau + t\hspace{0.05cm}'$&nbsp; results:
 
   
 
   
 
:$$X_1 ( f ) \cdot X_2 ( f ) = \int_{ - \infty }^{ + \infty } {\left[ {\int_{ - \infty }^{ + \infty } {x_1 ( \tau )}  \cdot x_2 ( {t - \tau} )\hspace{0.1cm}{\rm{d } } }\tau \right] }  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft}\hspace{0.1cm} {\rm{d} }t{\rm{.} }$$
 
:$$X_1 ( f ) \cdot X_2 ( f ) = \int_{ - \infty }^{ + \infty } {\left[ {\int_{ - \infty }^{ + \infty } {x_1 ( \tau )}  \cdot x_2 ( {t - \tau} )\hspace{0.1cm}{\rm{d } } }\tau \right] }  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft}\hspace{0.1cm} {\rm{d} }t{\rm{.} }$$
  
:In dieser Gleichung ist bereits berücksichtigt, dass die Exponentialfunktion unabhängig von der inneren Integrationsvariablen&nbsp; $τ$&nbsp; ist und deshalb nur als Faktor des inneren Integrals fungiert.
+
:This equation already takes into account that the exponential function is independent of the inner integration variable&nbsp; $τ$&nbsp; and therefore acts only as a factor of the inner integral.
  
*Bezeichnen wir nun das Produkt der beiden Spektren mit&nbsp; $P(f)$&nbsp; und die dazugehörige Zeitfunktion mit&nbsp; $p(t)$, so lautet das entsprechende Fourierintegral:
+
*If we now denote the product of the two spectra with&nbsp; $P(f)$&nbsp; and the corresponding time function with&nbsp; $p(t)$, the corresponding Fourier integral is
 
   
 
   
 
:$$P(f) = X_1 ( f ) \cdot X_2 ( f ) =\int_{ - \infty }^{ + \infty } {p( t )}  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft} \hspace{0.1cm}{\rm{d} }t{\rm{.} }$$
 
:$$P(f) = X_1 ( f ) \cdot X_2 ( f ) =\int_{ - \infty }^{ + \infty } {p( t )}  \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft} \hspace{0.1cm}{\rm{d} }t{\rm{.} }$$
  
*Ein Koeffizientenvergleich der beiden Integrale zeigt, dass folgender Zusammenhang gelten muss:
+
*A coefficient comparison of the two integrals shows that the following relationship must apply:
 
   
 
   
 
:$$p( t ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm{d } }\tau{\rm{.} }$$
 
:$$p( t ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm{d } }\tau{\rm{.} }$$

Revision as of 17:54, 22 November 2020

Convolution in Time Domain


The „convolution theorem” is one of the most important laws of the Fourier transform, to which an own subchapter is dedicated in this tutorial.

We will first consider the convolution theorem in the time domain and assume that the spectra of two time functions  $x_1(t)$  and  $x_2(t)$  are known:

$$X_1 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}x_1( t ),\quad X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}x_2 ( t ).$$

Then for the time function of the product  $X_1(f) \cdot X_2(f)$ applies:

$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}\int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

Here  $\tau$  is a formal integration variable with the dimension of a time.

$\text{Definition:}$  The above connection of the time function  $x_1(t)$  and  $x_2(t)$  is called  convolution  and represents this functional connection with a star:

$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau ) } \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau = x_{\rm{2} } (t) * x_{\rm{1} } (t) .$$

Thus the above Fourier correspondence can be written as follows:

$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$

The  Proof  will be shown at the end of the chapter.


Remark:   The convolution is  commutative   ⇒  The order of the operands can be changed:   ${ {x}}_{\rm{1}} ( t ) * { {x}}_{\rm{2}} (t ) ={ {x}}_{\rm{2}} ( t ) * { {x}}_{\rm{1}} (t ) $.


On Calculation of Signal and Spectrum of LTI–Output

$\text{Example 1:}$  Every linear time-invariant (LTI) system can be described by the frequency response  $H(f)$  as well as by the impulse response  $h(t)$  where the relation between these two system quantities is also given by the Fourier transform.

If a signal  $x(t)$  with the spectrum  $X(f)$  is applied to the input, the spectrum of the output signal is:

$$Y(f) = X(f) \cdot H(f)\hspace{0.05cm}.$$

It is possible to calculate the output signal in the time domain with the convolution theorem:

$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau )} \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm} {h( \tau )} \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = h(t) * x( t ).$$

This equation shows again commutativity  of the convolution operation.


Convolution in the Frequency Domain


The duality between time and frequency domain also allows statements regarding the spectrum of the product signal:

$$x_1 ( t ) \cdot x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 (f) * X_2 (f) = \int_{ - \infty }^{ + \infty } {X_1 ( \nu )} \cdot X_2 ( {f - \nu })\hspace{0.1cm}{\rm d}\nu.$$

This result can be proved similarly to the  convolution in the time domain . However, the integration variable  $\nu$  now has the dimension of a frequency.

Convolution in the Frequency Domain with the Example of DSB–AM

$\text{Example 2:}$  The   Double-Sideband Amplitude Modulation  (DSB-AM) without a carrier is described by the drawn graph.

  • The time domain representation (blue) shows the modulated signal  $s(t)$  as the product of the message signal  $q(t)$  and the (normalized) carrier signal  $z(t)$.
  • According to the convolution theorem it follows for the frequency range (red) that the output spectrum  $S(f)$  is equal to the convolution product of  $Q(f)$  and  $Z(f)$ .


Convolution of a Function With a Dirac Function


The convolution operation becomes very simple, if one of the two operands is a  Dirac function .This applies equally to the convolution in the time and frequency domain.

We will consider the convolution of a function  $x_1(t)$  with the function

$$x_2 ( t ) = \alpha \cdot \delta ( {t - T} ) \quad \circ\,\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad X_2 ( f )= \alpha \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm}\cdot\hspace{0.05cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.05cm}\cdot\hspace{0.05cm}f\hspace{0.05cm}\cdot\hspace{0.05cm}T}.$$

For the spectral function of the signal  $y(t) = x_1(t) \ast x_2(t)$  it follows:

$$Y( f ) = X_1 ( f ) \cdot X_2 ( f ) = X_1 ( f ) \cdot \alpha \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.05cm}\cdot\hspace{0.05cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.05cm}\cdot\hspace{0.05cm}f\hspace{0.05cm}\cdot\hspace{0.05cm}T}.$$

The complex exponential function leads to a shift by  $T$   ⇒   Shifting Theorem, the factor  $\alpha$  to a damping  $(\alpha < 1)$  or amplification  $(\alpha > 1)$.

From this follows:

$$x_1 (t) * x_2 (t) = \alpha \cdot x_1 ( {t - T} ).$$

$\text{In Words: }$  The convolution of any function with a Dirac function at  $t = T$  results in the function shifted to the right by  $T$  while the weighting of the Dirac function by the factor  $\alpha$  has to be taken into account.

$\text{Example 3:}$  A square wave signal $x(t)$ is delayed by an LTI-system by the delay time  $\tau = 3\,\text{ ms}$  and attenuated by the factor  $\alpha = 0.5$ .

Convolution of a Rectangle Pulse with a Dirac Function

Shift and attenuation can be recognized by the output signal  $y(t)$  as well as by the impulse response  $h(t)$.


Graphical Convolution


For the descriptions on this page the following convolution operation is assumed:

Screenshot of an older version of the  $\rm LNTwww$–Applet „Convolution”:
    $x_1(t)$  is denoted as  $x(t)$  and  $x_2(t)$  as  $h(t)$
$$y(t) = x_1 (t) * x_2 (t) $$
$$\Rightarrow \hspace{0.3cm}y(t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

The solution of the convolution integral shall be done graphically. It is assumed that  $x_1(t)$  and  $x_2(t)$  are continuous time signals.

Then the following steps are required:

  1.   The  time variables' of the two functions  change
        $x_1(t) \to x_1(\tau)$,   $x_2(t) \to x_2(\tau)$.
  2.   Mirroring the second function:   $x_2(\tau) \to x_2(-\tau)$.
  3.   Shifting the mirrorred function by $t$    $x_2(-\tau) \to x_2(t-\tau)$.
  4.   Multiplication  of both functions  $x_1(\tau)$  and  $x_2(t-\tau)$.
  5.   Integration  over the product respective  $\tau$  between the limits  $-\infty$  to  $+\infty$.


Since the convolution is commutative, instead of  $x_2(\tau)$  also  $x_1(\tau)$  can be mirrored.
Die Thematik wird auch durch das (neuere) HTML 5–Applet  Zur Verdeutlichung der grafischen Faltung  veranschaulicht.

Example of a Convolution:
Jump Function Convoluted With The Exponential Function

$\text{Example 4:}$  The procedure for the graphic convolution is now explained with a detailed example:

  • At the input of a filter there is a jump function  $x(t) = \gamma(t)$ .
  • The impulse response of the RC low pass filter is  $h( t ) = {1}/{T} \cdot {\rm{e} }^{ - t/d}.$


The graphic shows the red colored input signal  $x(\tau)$, blue the impulse response  $h(\tau)$  and grey the output signal  $y(\tau)$. The time axis is already renamed to $\tau$.

The output signal can be calculated using the following equation, for example:

$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau )} \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

Some more remarks on graphic folding:

  • The output value at  $t = 0$  is obtained by mirroring the input signal  $x(\tau)$  this mirrored signal  $x(-\tau)$  is multiplied by the impulse response  $h(\tau)$  and integrated above it.
  • As there is no time interval here, where both the blue curve  $h(\tau)$  and at the same time also the red dashed mirroring  $x(-\tau)$  is not equal to zero, the result is  $y(t=0)=0$.
  • For any other time  $t$ the input signal must  be shifted   ⇒   $x(t-\tau)$, for example according to the green dotted curve for  $t=T$.
  • As in this example also  $x(t-\tau)$  only  $0$  and  $1$  the integration  $($general from  $\tau_1$  to  $\tau_2)$  is very simple and you get here with  $\tau_1 = 0$  and  $\tau_2 = t$ :
$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$

This sketch is valid for   $t=T$  and results in the output value  $y(t=T) = 1 – 1/\text{e} \approx 0.632$.


Clear Interpretation of The Convolution


We assume an impulse response  $h(t)$  which is first constant for one millisecond and then decreases linearly to zero until   $t = 3 \,\text{ms}$ .

  • If a Dirac impulse  $K_0 \cdot \delta(t)$  is applied to the input of this low-pass filter, the output signal  $y(t)$  has the same shape as the impulse response  $h(t)$. The situation is shown in red in the picture.
  • An   $T= 1 \,\text{ms}$  shifted Dirac impulse with weight  $K_1 > K_0$  results in the output signal  $y_1(t)$  which is delayed with respect to the red signal and increased in amplitude.


On a Clear Interpretation of The Convolution

We now consider the input signal consisting of seven differently weighted and shifted Dirac impulses

$$x( t ) = \sum\limits_{n = 0}^6 {K_n \cdot \delta ( {t - n \cdot T} ),}$$

which can be understood as a time discrete approximation of a time continuous signal.

  • The signal at the output of the linear system is the sum of the seven partial signals marked with different colors in the image:
$$y( t ) = \sum\limits_{n = 0}^6 {K_n \cdot h( {t - n \cdot T} ).}$$
  • We now look at the signal value at time  $t = 4.5T$  (see dotted lines):
$$y( {t = 4.5T} ) = K_2 \cdot h( {2.5T} ) + K_3 \cdot h(1.5 T ) + K_4 \cdot h( 0.5 T ).$$

The signal value $y(t=4.5T)$ is thus only determined by the input signal values  $K_2$,  $K_3$  and  $K_4$  the influence

  • from   $K_4$  due to  $h(0.5T) = 1$  at the peak,
  • from  $K_3$  due to  $h(1.5T) = 0.75$  less strong,
  • from  $K_2$  due to  $h(2.5T) = 0.25$ the lowest.


Proof of The Convolution Theorem


$\text{Definition: }$  The following relation of time functions is called  $x_1(t)$  and  $x_2(t)$  the  convolution  and represents this functional relation with a star:

$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau ) } \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$

This results in the following Fourier correspondence:

$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$


$\text{Proof: }$  The Fourier integrals of functions  $x_1(t)$  and  $x_2(t)$  are with modified integration variables:

$$X_1 ( f ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\tau }\hspace{0.1cm} {\rm{d } }\tau{\rm{,} }$$
$$X_2 ( f ) = \int_{ - \infty }^{ + \infty } {x_2 ( {t'} ) } \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft\hspace{0.05cm}'}\hspace{0.1cm} {\rm{d} }t\hspace{0.05cm}'{\rm{.} }$$
  • If you form the product of the spectral functions, you get
$$X_1 (f) \cdot X_2 (f) = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {x_1 ( \tau ) \hspace{0.05 cm}\cdot } }\hspace{0.05 cm} x_2 ( {t\hspace{0.05cm}'} ) \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }f\left( {\tau + t\hspace{0.05cm}'} \right) }\hspace{0.1cm} {\rm d} \tau \hspace{0.1cm}{\rm d}t\hspace{0.05cm}'{\rm{.} }$$
  • With the substitution  $t = \tau + t\hspace{0.05cm}'$  results:
$$X_1 ( f ) \cdot X_2 ( f ) = \int_{ - \infty }^{ + \infty } {\left[ {\int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau} )\hspace{0.1cm}{\rm{d } } }\tau \right] } \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft}\hspace{0.1cm} {\rm{d} }t{\rm{.} }$$
This equation already takes into account that the exponential function is independent of the inner integration variable  $τ$  and therefore acts only as a factor of the inner integral.
  • If we now denote the product of the two spectra with  $P(f)$  and the corresponding time function with  $p(t)$, the corresponding Fourier integral is
$$P(f) = X_1 ( f ) \cdot X_2 ( f ) =\int_{ - \infty }^{ + \infty } {p( t )} \cdot {\rm{e} }^{ - {\rm{j} }2{\rm{\pi } }ft} \hspace{0.1cm}{\rm{d} }t{\rm{.} }$$
  • A coefficient comparison of the two integrals shows that the following relationship must apply:
$$p( t ) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm{d } }\tau{\rm{.} }$$
q.e.d.


Exercises for the Chapter


Exercise 3.7: Carrier Recovery

Exercise 3.7Z: Square Wave With Echo

Exercise 3.8: Triple Convolution

Exercise 3.8Z:Convolution of Two Rectangles

Exercise 3.9: Convolution of Rectangle and Gaussian Pulse

Exercise 3.9Z: Convolution of Gaussian Pulses