Difference between revisions of "Aufgaben:Exercise 1.5Z: Sinc-shaped Impulse Response"
From LNTwww
Line 80: | Line 80: | ||
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau )} \cdot | :$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau )} \cdot | ||
x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$ | x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$ | ||
− | *At time t=0 | + | *At time t=0 the following is obtained considering the symmetry of the cosine function: |
:$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot | :$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot | ||
{\rm cos}(2\pi \cdot f_0 | {\rm cos}(2\pi \cdot f_0 | ||
\cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$ | \cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$ | ||
− | * | + | *With the substitution u = π · Δf · τ this can also be formulated as follows: |
:y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u . | :y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u . | ||
− | * | + | *Here, the constant is a = 2f_0/Δf = 2. With this value, the given integral yields zero: y(t = 0 ) = {A_y } = 0. |
− | '''(3)''' | + | '''(3)''' The frequency response has the value K = 0.5 at f = f_0 = 100 \ \rm Hz according to the calculations for the subtask '''(1)''' . Therefore, |
− | :$$A_y = A_x/2 = 2\ \rm V | + | :A_y = A_x/2 = 2\ \rm V is obtained. |
− | * | + | *The same result is obtained by convolution according to the above equation.. |
− | * | + | *For a = 2f_0/Δf = 0.2 the integral is equal to π/2 and one obtains |
:y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}. | :y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}. | ||
− | '''(4)''' | + | '''(4)''' The transition from the band-pass to the band-stop is exactly at f = 0.5 \ \rm kHz and for this singular location the following holds: |
:H(f = f_0) = K/2. | :H(f = f_0) = K/2. | ||
*Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe '''(3)''' berechnet, nämlich A_y \; \underline{= 1 \, \rm V}. | *Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe '''(3)''' berechnet, nämlich A_y \; \underline{= 1 \, \rm V}. |
Revision as of 22:03, 6 September 2021
The impulse response of a linear time-invariant (and non-causal) system was determined as follows (see graph):
- h(t) = 500\hspace{0.1cm}{ {\rm s}}^{-1}\cdot{\rm sinc}\big[{t}/({ 1\hspace{0.1cm}{\rm ms}})\big] .
The output signals y(t) should be computed if various cosine oscillations of different frequency f_0 are applied to the input:
- x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot f_0 \cdot t ) .
Please note:
- The exercise belongs to the chapter Some Low-Pass Functions in Systems Theory.
- The solution can be found in the time domain or in the frequency domain. In the sample solution you will find both approaches.
- The following definite integral is given:
- \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u = \left\{ \begin{array}{c} \pi/2 \\ \pi/4 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ |a| < 1,} \\{ |a| = 1,} \\ { |a| > 1.} \\ \end{array}
Questions
Solution
(1) A comparison with the equations on the page Idealer Tiefpass or applying the Fourierrücktransformation shows that H(f) is an ideal low-pass filter:
- H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K \\ K/2 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}
- The equidistant zero-crossings of the impulse response occur at an interval of Δt = 1 \ \rm ms .
- From this it follows that the equivalent bandwidth is Δf \rm \underline{ = 1 \ \rm kHz}.
- If K = 1 was true, then h(0) = Δf = 1000 \cdot \rm 1/s should hold.
- Because of the given h(0) = 500 \cdot{\rm 1/s} = Δf/2 the direct signal (DC) transmission factor thus is K = H(f = 0) \; \rm \underline{= 0.5}.
(2) This problem is most easily solved in the spectral domain.
- For the output spectrum the following holds: Y(f) = X(f)\cdot H(f) .
- X(f) consists of two Dirac functions at ± f_0 each with weight A_x/2 =2 \hspace{0.08cm}\rm V.
- For f = f_0 = 1 \ {\rm kHz} > Δf/2 , however H(f) = 0 holds, such that Y(f) = 0 and hence also y(t) = 0 ⇒ \underline{y(t = 0) = 0}.
The solution in the time domain is based on convolution:
- y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau )} \cdot x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.
- At time t = 0 the following is obtained considering the symmetry of the cosine function:
- y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot {\rm cos}(2\pi \cdot f_0 \cdot \tau ) \hspace{0.1cm}{\rm d}\tau.
- With the substitution u = π · Δf · τ this can also be formulated as follows:
- y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u .
- Here, the constant is a = 2f_0/Δf = 2. With this value, the given integral yields zero: y(t = 0 ) = {A_y } = 0.
(3) The frequency response has the value K = 0.5 at f = f_0 = 100 \ \rm Hz according to the calculations for the subtask (1) . Therefore,
- A_y = A_x/2 = 2\ \rm V is obtained.
- The same result is obtained by convolution according to the above equation..
- For a = 2f_0/Δf = 0.2 the integral is equal to π/2 and one obtains
- y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.
(4) The transition from the band-pass to the band-stop is exactly at f = 0.5 \ \rm kHz and for this singular location the following holds:
- H(f = f_0) = K/2.
- Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe (3) berechnet, nämlich A_y \; \underline{= 1 \, \rm V}.
- Zum gleichen Ergebnis kommt man mit a = 2f_0/Δf = 1 über die Faltung.