Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.5Z: Sinc-shaped Impulse Response"

From LNTwww
Line 80: Line 80:
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau  )}  \cdot
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau  )}  \cdot
 
  x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
  x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
*At time  t=0  erhält man unter Berücksichtigung der Symmetrie der Cosinusfunktion:
+
*At time  t=0  the following is obtained considering the symmetry of the cosine function:
 
:$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau  )  \cdot
 
:$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau  )  \cdot
 
  {\rm cos}(2\pi \cdot  f_0
 
  {\rm cos}(2\pi \cdot  f_0
 
\cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
 
\cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
*Mit der Substitution  u = π · Δf · τ  kann hierfür auch geschrieben werden:
+
*With the substitution  u = π · Δf · τ  this can also be formulated as follows:
 
:y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm d}u .
 
:y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm d}u .
*Hierbei ist die Konstante  a = 2f_0/Δf = 2. Mit diesem Wert liefert das angegebene Integral den Wert Null:   y(t = 0 ) = {A_y } = 0.
+
*Here, the constant is  a = 2f_0/Δf = 2. With this value, the given integral yields zero:   y(t = 0 ) = {A_y } = 0.
  
  
  
'''(3)'''  Der Frequenzgang hat bei  f = f_0 = 100 \ \rm Hz  nach den Berechnungen zur Teilaufgabe  '''(1)'''  den Wert  $K = 0.5$. Deshalb ergibt sich
+
'''(3)'''  The frequency response has the value  K = 0.5 at  f = f_0 = 100 \ \rm Hz  according to the calculations for the subtask  '''(1)''' . Therefore,
:$$A_y = A_x/2 = 2\ \rm  V.$$  
+
:A_y = A_x/2 = 2\ \rm  V is obtained.
*Zum gleichen Ergebnis kommt man über die Faltung nach obiger Gleichung.  
+
*The same result is obtained by convolution according to the above equation..  
*Für  a = 2f_0/Δf = 0.2  ist das Integral gleich  π/2  und man erhält
+
*For  a = 2f_0/Δf = 0.2  the integral is equal to  π/2  and one obtains
 
:y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.
 
:y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.
  
  
'''(4)'''  Genau bei  f = 0.5  \ \rm kHz  liegt der Übergang vom Durchlass– zum Sperrbereich und es gilt für diese singuläre Stelle:  
+
'''(4)'''  The transition from the band-pass to the band-stop is exactly at  f = 0.5  \ \rm kHz  and for this singular location the following holds:  
 
:H(f = f_0) = K/2.  
 
:H(f = f_0) = K/2.  
 
*Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe  '''(3)'''   berechnet, nämlich  A_y \;  \underline{= 1  \, \rm V}.  
 
*Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe  '''(3)'''   berechnet, nämlich  A_y \;  \underline{= 1  \, \rm V}.  

Revision as of 22:03, 6 September 2021

\rm sinc–shaped impulse response

The impulse response of a linear time-invariant (and non-causal) system was determined as follows (see graph):

h(t) = 500\hspace{0.1cm}{ {\rm s}}^{-1}\cdot{\rm sinc}\big[{t}/({ 1\hspace{0.1cm}{\rm ms}})\big] .

The output signals  y(t) should be computed if various cosine oscillations of different frequency  f_0  are applied to the input:

x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot f_0 \cdot t ) .





Please note:

  • The exercise belongs to the chapter  Some Low-Pass Functions in Systems Theory.
  • The solution can be found in the time domain or in the frequency domain. In the sample solution you will find both approaches.
  • The following definite integral is given:
\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u = \left\{ \begin{array}{c} \pi/2 \\ \pi/4 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ |a| < 1,} \\{ |a| = 1,} \\ { |a| > 1.} \\ \end{array}



Questions

1

Compute the frequency response  H(f)  of the LTI system. What is the equivalent bandwidth and the direct signal (DC) transmission factor?

\Delta f \ =\

\ \rm kHz
H(f = 0) \ =\

2

What is the signal value of the output signal  y(t)  at time  t = 0  if the input is cosine-shaped and of frequency  \underline{f_0 = 1\ \rm kHz}?

y(t = 0) \ = \

\ \rm V

3

What is the signal value of the output signal  y(t)  at time  t = 0  if the input is cosine-shaped and of frequency  \underline{f_0 = 0.1\ \rm kHz}?

y(t = 0) \ =\

\ \rm V

4

What is the signal value of the output signal  y(t)  at timee  t = 0  if the input is cosine-shaped and of frequency  \underline{f_0 = 0.5\ \rm kHz}?

y(t = 0) \ = \

\ \rm V


Solution

(1)  A comparison with the equations on the page  Idealer Tiefpass or applying the  Fourierrücktransformation  shows that  H(f)  is an ideal low-pass filter:

H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K \\ K/2 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}
  • The equidistant zero-crossings of the impulse response occur at an interval of  Δt = 1 \ \rm ms .
  • From this it follows that the equivalent bandwidth is  Δf \rm \underline{ = 1 \ \rm kHz}
  • If  K = 1 was true, then  h(0) = Δf = 1000 \cdot \rm 1/s  should hold.
  • Because of the given  h(0) = 500 \cdot{\rm 1/s} = Δf/2  the direct signal (DC) transmission factor thus is  K = H(f = 0) \; \rm \underline{= 0.5}.


(2)  This problem is most easily solved in the spectral domain.

  • For the output spectrum the following holds:   Y(f) = X(f)\cdot H(f) .
  • X(f)  consists of two Dirac functions at  ± f_0 each with weight  A_x/2 =2 \hspace{0.08cm}\rm V.
  • For  f = f_0 = 1 \ {\rm kHz} > Δf/2 , however  H(f) = 0 holds, such that  Y(f) = 0  and hence also   y(t) = 0    ⇒   \underline{y(t = 0) = 0}.


The solution in the time domain is based on convolution:

y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau )} \cdot x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.
  • At time  t = 0  the following is obtained considering the symmetry of the cosine function:
y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot {\rm cos}(2\pi \cdot f_0 \cdot \tau ) \hspace{0.1cm}{\rm d}\tau.
  • With the substitution  u = π · Δf · τ  this can also be formulated as follows:
y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u .
  • Here, the constant is  a = 2f_0/Δf = 2. With this value, the given integral yields zero:   y(t = 0 ) = {A_y } = 0.


(3)  The frequency response has the value  K = 0.5 at  f = f_0 = 100 \ \rm Hz  according to the calculations for the subtask  (1) . Therefore,

A_y = A_x/2 = 2\ \rm V is obtained.
  • The same result is obtained by convolution according to the above equation..
  • For  a = 2f_0/Δf = 0.2  the integral is equal to  π/2  and one obtains
y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.


(4)  The transition from the band-pass to the band-stop is exactly at  f = 0.5 \ \rm kHz  and for this singular location the following holds:

H(f = f_0) = K/2.
  • Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe  (3)  berechnet, nämlich  A_y \; \underline{= 1 \, \rm V}.
  • Zum gleichen Ergebnis kommt man mit  a = 2f_0/Δf = 1  über die Faltung.