Difference between revisions of "Aufgaben:Exercise 1.6Z: Interpretation of the Frequency Response"
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}} |
[[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulsantwort und Eingangssignale]] | [[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulsantwort und Eingangssignale]] | ||
Line 25: | Line 25: | ||
− | '' | + | ''Please note:'' |
− | * | + | *The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory| Some Low-Pass Functions in Systems Theory]]. |
*Entgegen der sonst üblichen Definition der Amplitude können die "$A_i$" durchaus negativ sein. Dies entspricht dann der Funktion „Minus-Cosinus”. | *Entgegen der sonst üblichen Definition der Amplitude können die "$A_i$" durchaus negativ sein. Dies entspricht dann der Funktion „Minus-Cosinus”. | ||
Line 34: | Line 34: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
Line 73: | Line 73: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''(1)''' Richtig ist der <u>Lösungsvorschlag 2</u>: Es handelt sich um einen <u>Spalttiefpass</u>. | '''(1)''' Richtig ist der <u>Lösungsvorschlag 2</u>: Es handelt sich um einen <u>Spalttiefpass</u>. |
Revision as of 17:09, 7 September 2021
Die Aufgabe soll den Einfluss eines Tiefpasses $H(f)$ auf cosinusförmige Signale der Form
- $$x_i(t) = A_x \cdot {\rm cos}(2\pi f_i t )$$
veranschaulichen. In der Grafik sehen Sie die Signale $x_i(t)$, wobei der Index $i$ die Frequenz in $\rm kHz$ angibt. So beschreibt $x_2(t)$ ein $2 \hspace{0.09cm} \rm kHz$–Signal.
Die Signalamplitude beträgt jeweils $A_x = 1 \hspace{0.05cm} \rm V$. Das Gleichsignal $x_0(t)$ ist als Grenzfall eines Cosinussignals mit der Frequenz $f_0 =0$ zu interpretieren.
Die obere Skizze zeigt die rechteckige Impulsantwort $h(t)$ des Tiefpasses. Dessen Frequenzgang lautet:
- $$H(f) = {\rm si}(\pi {f}/{ {\rm \Delta}f}) .$$
Aufgrund der Linearität und der Tatsache, dass $H(f)$ reell und gerade ist, sind die Ausgangssignale ebenfalls cosinusförmig:
- $$y_i(t) = A_i \cdot {\rm cos}(2\pi f_i t ) .$$
- Gesucht werden die Signalamplituden $A_i$ am Ausgang für verschiedene Frequenzen $f_i$, wobei die Lösung ausschließlich im Zeitbereich gefunden werden soll.
- Dieser etwas umständliche Lösungsweg soll dazu dienen, den grundsätzlichen Zusammenhang zwischen Zeit– und Frequenzbereich deutlich zu machen.
Please note:
- The exercise belongs to the chapter Some Low-Pass Functions in Systems Theory.
- Entgegen der sonst üblichen Definition der Amplitude können die "$A_i$" durchaus negativ sein. Dies entspricht dann der Funktion „Minus-Cosinus”.
Questions
Solution
(2) Die (äquivalente) Zeitdauer der Impulsantwort ist $Δt = 0.5 \ \rm ms$. Die äquivalente Bandbreite ist gleich dem Kehrwert:
- $$Δf = 1/Δt \ \rm \underline{= \ 2 \ kHz}.$$
(3) Richtig sind die Lösungsvorschläge 1 und 3:
- Da $y_i(t)$ cosinusförmig ist, ist die Amplitude $A_i = y_i(t = 0)$. Das Ausgangssignal wird hier über die Faltung berechnet:
- $$A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau )} \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
- Berücksichtigt man die Symmetrie und die zeitliche Begrenzung von $h(t)$, so kommt man zum Ergebnis:
- $$A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi f_i \tau )\hspace{0.1cm}{\rm d}\tau.$$
(4) Richtig sind die Lösungsvorschläge 2, 3 und 5:
- Beim Gleichsignal $x_0(t) = A_x$ ist $f_i = 0$ zu setzen und man erhält $A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}$.
- Dagegen verschwindet bei den Cosinusfrequenzen $f_2 = 2 \ \rm kHz$ und $f_4 = 4 \ \rm kHz$ jeweils das Integral, da dann genau über eine bzw. zwei Periodendauern zu integrieren ist: $A_2 \ \rm \underline{ = \hspace{0.05cm} 0}$ und $A_4 \hspace{0.05cm} \rm \underline{ = \ 0}$.
- Im Frequenzbereich entsprechen die hier behandelten Fälle:
- $$H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.$$
(5) Das Ergebnis der Teilaufgabe (3) lautet unter Berücksichtigung der Symmetrie für $f_i = f_1$:
- $$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{ \Delta t /2 } {\rm cos}(2\pi f_1 \tau )\hspace{0.1cm}{\rm d}\tau = \frac{2A_x}{2\pi f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi f_1 \frac{\Delta t}{2} )= A_x \cdot {\rm si}(\pi f_1 \Delta t ).$$
- Mit $f_1 · Δt = 0.5$ lautet somit das Ergebnis:
- $$A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.$$
- Entsprechend erhält man mit $f_3 · Δt = 1.5$:
- $$A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.$$
- Genau zu den gleichen Ergebnissen – aber deutlich schneller – kommt man durch die Anwendung der Gleichung:
- $$A_i = A_x · H(f = f_i).$$
- Bereits aus den Grafiken auf der Angabenseite erkennt man, dass das Integral über $x_1(t)$ im markierten Bereich positiv und das Integral über $x_3(t)$ negativ ist.
- Es ist allerdings anzumerken, dass man im Allgemeinen als Amplitude meist den Betrag bezeichnet (siehe Hinweis auf der Angabenseite).