Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Exercise 2.4Z: Characteristics Measurement"

From LNTwww
Line 131: Line 131:
  
  
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nichtlineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nonlinear Distortions^]]

Revision as of 12:10, 20 September 2021

Given characteristic curve  y=g(x)

It is known that the characteristic curve can be represented as follows for a nonlinear system:

y(t)=c1x(t)+c2x2(t).

Since the distortions are nonlinear no frequency response  H(f)  can be given.

To determine the dimensionless coefficient  c1  as well as the quadratic coefficient  c2  different rectangular pulses  x(t)  – characterized by the amplitude  Ax  and width  Tx  – are now applied to the input and the pulse amplitude  Ay  at the output is measured in each case.

The first three trials generate the following values:

  • Ax=1 V,Tx=8 ms :     Ay=0.55 V,
  • Ax=2 V,Tx=4 ms :     Ay=1.20 V,
  • Ax=3 V,Tx=2 ms :     Ay=1.95 V.


For the subtasks  (3)  and  (4)  let the input signal  x(t)  be a harmonic oscillation because only for such an oscillation a distortion factor can be specified.

In contrast, a triangular pulse with amplitude  Ax=3 V  and the one-sided pulse duration  Tx=2 ms  is considered for the subtask  (5) :

x(t)=Ax(1|t|/Tx)





Please note:

  • The following abbreviations are used in the formulation of the questions:
y1(t)=c1x(t),y2(t)=c2x2(t).


Questions

1

A rectangular pulse  x(t)  with amplitude  Ax  and duration  Tx  is applied to the input. 
Which statements hold for the output pulse  y(t)?

The output pulse  y(t)  is triangular in shape.
The amplitudes at the input and output are the same  ⇒   Ay=Ax.
The pulse duration is not changed by the system  ⇒   Ty=Tx.

2

Compute the first two coefficients of the Taylor series.

c1 = 

c2 = 

 1/V

3

What distortion factor  K  is measured with the test signal  x(t)=1Vcos(ω0t) ? That is:   Ax=1V_.

K = 

 %

4

What distortion factor  K  is measured with the test signal  x(t)=3Vcos(ω0t) ? That is:   Ax=3V_.

K = 

 %

5

What output pulse  y(t)  arises as a result when the input pulse is triangular? What are the signal values at  t=0  and  t=Tx/2?

y(t=0) = 

 V
y(t=Tx/2) = 

 V


Solution

(1)  Proposed solution 3 is the only correct one:

  • If the input pulse x(t)  is rectangular, then x2(t)  is also a rectangle with height A2x  between  0  and  Tx; outside zero.
  • The overall output signal y(t)  is thus also rectangular with the amplitude
Ay=c1Ax+c2A2x.
  • The following holds for the pulse duration:   Ty=Tx.


(2)  The following system of linear equations can be specified with the first two sets of parameters:

c11V+c2(1V)2=0.55V,
c12V+c2(2V)2=1.20V.
  • The following is obtained by multiplying the first equation by  2  and adding the two equations:
c22V2=0.1Vc2=0.051/V_.
  • The linear coefficient is thus  c1=0.5_.
  • The third set of parameters can be used to verify the result:
c13V+c2(3V)2=0.53V+0.05 1/V9V2=1.95V.


(3)  The specification of a distortion factor requires the use of a harmonic oscillation at the input.

  • If  X+(f)=1 Vδ(ff0) holds, then the spectrum of the analytic signal at the output is:
Y+(f)=c2/2A2xδ(f)+c1Axδ(ff0)+c2/2A2xδ(f2f0).
  • The Dirac function at  f=0  follows from the trigonometric transformation  cos2(α)=1/2+1/2cos(α).
  • With  A1=c1Ax=0.5 V  and  A2=(c2/2)A2x=0.025 V2  the following is thus obtained for the distortion factor:
K=A2A1=c2/2Axc1=0.0250.5=5%_.


(4)  According to the solution of the last subtask  K  is proportional to  Ax. Therefore, one now obtains  K=15%_.


(5)  Now the output signal is:

y(t)=c1Ax(1|t|/Tx)+c2A2x(1|t|/Tx)2.
  • The following values occur at time t=0  and  t=Tx/2 :
y(t=0)=c1Ax+c2A2x=1.95V_,
y(t=Tx/2)=c1Ax1/2+c2A2x1/4=0.75V+0.1125V=0.8625V_.