Difference between revisions of "Aufgaben:Exercise 3.7Z: Partial Fraction Decomposition"
Line 104: | Line 104: | ||
}= H_{\rm L}^{(4)}(p) | }= H_{\rm L}^{(4)}(p) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The double zero is at po=0 and the double pole at px=−A=−2. |
− | '''(3)''' | + | '''(3)''' The following holds for the configuration (1) : |
:$$H_{\rm L}(p) =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p) | :$$H_{\rm L}(p) =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p) | ||
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{4}{p+2} | \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{4}{p+2} |
Revision as of 09:30, 26 October 2021
In the graph, four two-port networks are given by their pole–zero diagrams HL(p) .
- They all have in common that the number Z of zeros is equal to the number N of poles.
- The constant factor in each case is K=1.
In the special case Z=N the residue theorem cannot be applied directly to compute the impulse response h(t) .
Rather, a partial fraction decomposition corresponding to
- HL(p)=1−HL′(p)
must be made beforehand. Then,
- h(t)=δ(t)−h′(t) holds for the impulse response.
h′(t) is the inverse Laplace transform of HL′(p) , where the condition Z′<N′ is satisfied.
Two of the four configurations given are so-called all-pass filters.
- This refers to two-port networks for which the Fourier spectral function satisfies the condition |H(f)|=1 ⇒ a(f)=0 .
- In Exercise 3.4Z it is given how the poles and zeros of such an all-pass filter must be positioned.
Furthermore, in this exercise the p–transfer function
- H(5)L(p)=p/A(√p/A+√A/p)2
⇒ "configuration (5)" will be examined in more detail, which can be represented by one of the four pole–zero diagrams given in the graph if the parameter A is chosen correctly.
Please note:
- The exercise belongs to the chapter Inverse Laplace Transform.
- In particular, reference is made to the page Partial fraction decomposition.
Questions
Solution
- According to the criteria given in exercise 3.4Z, there is always an all-pass filter at hand if there is a corresponding zero po=+A+j⋅B in the right p–half-plane for each pole px=−A+j⋅B in the left half-plane.
- Considering K=1 the attenuation function is then a(f)=0 Np ⇒ |H(f)|=1.
- The following can be seen from the graph on the information page: The configurations (1) and (2) satisfy exactly these symmetry properties.
(2) The suggested solution 4 is correct:
- The transfer function H(5)L(p) is also described by configuration (4) as the following calculation shows:
- H(5)L(p)=p/A(√p/A+√A/p)2=p/Ap/A+2+A/p=p2p2+2A⋅p+A2=p2(p+A)2=H(4)L(p).
- The double zero is at po=0 and the double pole at px=−A=−2.
(3) The following holds for the configuration (1) :
- HL(p)=p−2p+2=p+2−4p+2=1−4p+2=1−HL′(p)⇒HL′(p)=4p+2⇒HL′(p=0)=2_.
(4) In gleicher Weise ergibt sich für die Konfiguration (2):
- HL(p)=(p−2−j⋅2)(p−2+j⋅2)(p+2−j⋅2)(p+2+j⋅2)=p2−4⋅p+8p2+4⋅p+8=p2+4⋅p+8−8⋅pp2+4⋅p+8=1−8⋅pp2+4⋅p+8=1−HL′(p)
- ⇒HL′(p)=8⋅p(p+2−j⋅2)(p+2+j⋅2).
Richtig sind also die Lösungsvorschläge 2 und 3 im Gegensatz zur Aussage 1:
- Während HL(p) zwei konjugiert–komplexe Nullstellen aufweist,
- besitzt HL′(p) nur eine einzige Nullstelle bei po′=0.
(5) Für die Konfiguration (3) gilt:
- HL(p)=p2p2+4⋅p+8=p2+4⋅p+8−4⋅p−8p2+4⋅p+8=1−HL′(p)
- ⇒HL′(p)=4⋅p+2(p+2−j⋅2)(p+2+j⋅2).
- Die Nullstelle von HL′(p) liegt nun bei po′=−2.
- Die Konstante ist K′=4 ⇒ richtig ist hier nur der Lösungsvorschlag 2.
(6) Schließlich gilt für die Konfiguration (4):
- HL(p)=p2(p+2)2=p2+4⋅p+4−4⋅p−4p2+4⋅p+4=1−4⋅p+4p2+4⋅p+4⇒HL′(p)=4⋅p+1(p+2)2.
Richtig ist auch hier der Lösungsvorschlag 2. Allgemein lässt sich sagen:
- Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.
- Die Pole von HL′(p) sind dagegen stets identisch mit denen von HL(p).