Difference between revisions of "Aufgaben:Exercise 4.7: Copper Twin Wire 0.5 mm"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Kupfer–Doppelader
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs
 
}}
 
}}
  
[[File:P_ID1818__LZI_A_4_7.png|right|frame|Impulsantwort der Kupfer-Doppelader]]
+
[[File:P_ID1818__LZI_A_4_7.png|right|frame|Impulse response of the copper twin wire]]
Das Zeitverhalten einer Kupferdoppelader mit Durchmesser  $d = 0.5 \ \rm mm$  soll analysiert werden.  
+
The time response of a copper twin wire with diameter  $d = 0.5 \ \rm mm$  is to be analyzed.
  
Der Frequenzgang lautet mit der Leitungslänge  $l = 1.5 \ \rm km$  und der Bitrate  $R = 10  \rm Mbit/s$:
+
The frequency response with the line length  $l = 1.5 \ \rm km$  and the bit rate  $R = 10  \rm Mbit/s$:
 
:$$H_{\rm K}(f)  =  {\rm e}^{-{\rm a}_0 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot  \hspace{0.01cm}\tau_{\rm P}}
 
:$$H_{\rm K}(f)  =  {\rm e}^{-{\rm a}_0 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot  \hspace{0.01cm}\tau_{\rm P}}
 
   \cdot {\rm
 
   \cdot {\rm
Line 13: Line 13:
 
   e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}
 
   e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Verwendet sind folgende Größen, die sich aus dem Dämpfungs– und Phasenmaß ableiten lassen:
+
The following quantities are used, which can be derived from the damping and phase function per unit length:
 
:$${a}_0  =  \alpha_0 \cdot l\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\alpha_0 = 0.5066\,\, \frac{\rm Np}{\rm km}\hspace{0.05cm},$$
 
:$${a}_0  =  \alpha_0 \cdot l\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\alpha_0 = 0.5066\,\, \frac{\rm Np}{\rm km}\hspace{0.05cm},$$
 
:$$  \tau_{\rm P}  =  \frac{\beta_1 \cdot l}{2 \pi} \hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\beta_1 = 30.6\,\,
 
:$$  \tau_{\rm P}  =  \frac{\beta_1 \cdot l}{2 \pi} \hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\beta_1 = 30.6\,\,
Line 25: Line 25:
 
   \sqrt{MHz}}\hspace{0.05cm}.$$
 
   \sqrt{MHz}}\hspace{0.05cm}.$$
  
Die Impulsantwort lässt sich somit in der Form
+
The impulse response can thus be expressed in the form
 
:$$h_{\rm K}(t )  = K \cdot \big [ \delta(t - \tau_{\rm P})\star h_{1}(t) \star h_{2}(t) \big ]$$
 
:$$h_{\rm K}(t )  = K \cdot \big [ \delta(t - \tau_{\rm P})\star h_{1}(t) \star h_{2}(t) \big ]$$
darstellen, wobei
+
where
* die Teilimpulsantwort  $h_1(t)$  auf den dritten Term in obiger Gleichung zurückgeht, und
+
* the partial impulse response  $h_1(t)$  is due to the third term in the above equation, and
* $h_2(t)$  die gemeinsame Zeitbereichsdarstellung der beiden letzten Terme angibt.
+
* $h_2(t)$  indicates the joint time-domain representation of the last two terms.
  
  
Die Grafik zeigt als rote Kurve den Anteil &nbsp;$h_2(t)$&nbsp; der Impulsantwort und das Faltungsprodukt &nbsp;$h_1(t) \star h_2(t)$&nbsp; &rArr; &nbsp; blauer Kurvenverlauf). <br>Dabei ist &nbsp;$h_2(t)$&nbsp; gleich der [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln#Impulsantwort_eines_Koaxialkabels|Koaxialkabel&ndash;Impulsantwort]] mit der charakteristischen Kabeldämpfung &nbsp;${a}_\star = {a}_2$.
+
The graph shows as red curve the part &nbsp;$h_2(t)$&nbsp; of the impulse response and the convolution product &nbsp;$h_1(t) \star h_2(t)$&nbsp; &rArr; &nbsp; blue curve). <br>Here &nbsp;$h_2(t)$&nbsp; is equal to [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Koaxialkabeln#Impulsantwort_eines_Koaxialkabels|coaxial cable impulse response]] with the characteristic cable attenuation &nbsp;${a}_\star = {a}_2$.
  
  
Line 42: Line 42:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum Kapitel&nbsp;  [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Eigenschaften von Kupfer–Doppeladern]].
+
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Properties of Balanced Copper Pairs]].
 
   
 
   
*Die Parameter &nbsp;$\alpha_0$, &nbsp;$\alpha_1$ und &nbsp;$\alpha_2$ wurden aus den &nbsp;$k$&ndash;Parametern umgerechnet, wie in&nbsp; [[Aufgaben:4.6_k-Parameter_und_Alpha-Parameter|Aufgabe 4.6]]&nbsp; gezeigt.  
+
*The parameters &nbsp;$\alpha_0$, &nbsp;$\alpha_1$ and &nbsp;$\alpha_2$ were converted from the &nbsp;$k$&ndash;parameters as shown in&nbsp; [[Aufgaben:Exercise_4.6:_k-parameters_and_alpha-parameters|Exercise 4.6]]&nbsp; gezeigt.  
*Der Phasenmaßparameter &nbsp;$\beta_2$&nbsp; wurde hier zahlenmäßig gleich dem Dämpfungsmaßparameter&nbsp; $\alpha_2$&nbsp; gesetzt.
+
*The phase function parameter &nbsp;$\beta_2$&nbsp; was set here numerically equal to the attenuation function parameter&nbsp; $\alpha_2$.&nbsp;
*Der Dämpfungsanteil &nbsp;${a}_2$&nbsp; und der Phasenanteil &nbsp;${b}_2$&nbsp; unterscheiden sich deshalb nur in der Einheit.  
+
*Therefore, the attenuation component &nbsp;${a}_2$&nbsp; and the phase component &nbsp;${b}_2$&nbsp; differ only in units.
*Auf der Seite&nbsp; [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern#Diskussion_der_gefundenen_N.C3.A4herungsl.C3.B6sung|Diskussion der gefundenen Näherungslösung]]&nbsp; wird dargelegt, warum diese Maßnahme erforderlich ist.
+
*On the page&nbsp; [[Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs#Discussion_of_the_approximate_solution_found|Discussion of the approximate solution found]],&nbsp; it is explained why this measure is necessary.
*Sie können zur Überprüfung Ihrer Ergebnisse das interaktive Applet &nbsp;[[Applets:Zeitverhalten_von_Kupferkabeln|Zeitverhalten von Kupferkabeln]]&nbsp; benutzen.
+
*You can use the&nbsp; (German language)&nbsp; interactive SWF applet &nbsp;[[Applets:Zeitverhalten_von_Kupferkabeln|"Zeitverhalten von Kupferkabeln"]] &nbsp; &rArr; &nbsp; "Time behavior of copper cables"&nbsp; to check your results.
  
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Konstante &nbsp;$K$&nbsp; der Impulsantwort &nbsp;$h_{\rm K}(t )$.
+
{Calculate the constant &nbsp;$K$&nbsp; of the impulse response &nbsp;$h_{\rm K}(t )$.
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $  { 0.468 3% }
 
$K \ = \ $  { 0.468 3% }
  
  
{Berechnen Sie die Phasenlaufzeit &nbsp;$\tau_P$, bezogen auf die Symboldauer &nbsp;$T$.
+
{Calculate the phase delay &nbsp;$\tau_P$, related to the symbol duration &nbsp;$T$.
 
|type="{}"}
 
|type="{}"}
 
$\tau_P/T \ = \ $ { 73 3% }
 
$\tau_P/T \ = \ $ { 73 3% }
  
  
{Wie groß ist die charakteristische Dämpfung &nbsp;$a_\star$&nbsp; des vergleichbaren Koaxialkabels?
+
{What is the characteristic attenuation &nbsp;$a_\star$&nbsp; of the comparable coaxial cable?
 
|type="{}"}
 
|type="{}"}
 
$a_\star \ = \ $ { 25.5 } $\ \rm dB$
 
$a_\star \ = \ $ { 25.5 } $\ \rm dB$
  
  
{Welche Eigenschaften weist die Teilimpulsantwort &nbsp;$h_{\rm 1}(t )$&nbsp; auf?
+
{What are the characteristics of the partial impulse response &nbsp;$h_{\rm 1}(t )$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+  $h_{\rm 1}(t )$&nbsp; ist eine gerade Funktion.
+
+  $h_{\rm 1}(t )$&nbsp; is an even function.
+ Das Maximum von  &nbsp;$h_{\rm 1}(t )$&nbsp; liegt bei &nbsp;$t = 0$.
+
+ The maximum of &nbsp;$h_{\rm 1}(t )$&nbsp; is at &nbsp;$t = 0$.
- Das Integral über &nbsp;$h_{\rm 1}(t )$&nbsp; ergibt den Wert &nbsp;$2$.
+
- The integral over &nbsp;$h_{\rm 1}(t )$&nbsp; gives the value &nbsp;$2$.
  
  
{Welche Eigenschaften erkennt man an der Funktion &nbsp;$h_1(t ) \star h_2(t )$?
+
{Which properties can you recognize in the function &nbsp;$h_1(t ) \star h_2(t )$?
 
|type="[]"}
 
|type="[]"}
+ $h_1(t ) \star h_2(t )$&nbsp; gibt die Verzerrungen von &nbsp;$h_{\rm K}(t )$&nbsp; vollständig wieder.
+
+ $h_1(t ) \star h_2(t )$&nbsp; completely reproduces the distortions of &nbsp;$h_{\rm K}(t )$.&nbsp;
- $h_1(t ) \star h_2(t )$&nbsp; unterscheidet sich von &nbsp;$h_{\rm K}(t )$&nbsp; nur durch einen Faktor.
+
- $h_1(t ) \star h_2(t )$&nbsp; differs from &nbsp;$h_{\rm K}(t )$&nbsp; only by one factor.
  
  
Line 88: Line 88:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit&nbsp; $a_0 = \alpha_0 \cdot l \approx 0.76 \ \rm Np$&nbsp; erhält man für die Konstante&nbsp; $K$, die den Einfluss des Koeffizienten&nbsp; $ \alpha_0$&nbsp; auf die Impulsantwort angibt:
+
'''(1)'''&nbsp; With&nbsp; $a_0 = \alpha_0 \cdot l \approx 0.76 \ \rm Np$,&nbsp; for the constant&nbsp; $K$, which indicates the influence of the coefficient&nbsp; $ \alpha_0$&nbsp; on the impulse response, we obtain:
 
:$$K = {\rm e}^{-{a}_0 }= {\rm e}^{-0.76} \hspace{0.15cm}\underline{= 0.468} \hspace{0.05cm}.$$
 
:$$K = {\rm e}^{-{a}_0 }= {\rm e}^{-0.76} \hspace{0.15cm}\underline{= 0.468} \hspace{0.05cm}.$$
  
  
  
'''(2)'''&nbsp; Für die Phasenlaufzeit gilt mit der angegebenen Gleichung:
+
'''(2)'''&nbsp; For the phase delay, using the given equation:
 
:$$\tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi}=  \frac{30.6 \cdot 1.5}{2 \pi}\, {\rm &micro; s}\approx 7.31\, {\rm &micro;
 
:$$\tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi}=  \frac{30.6 \cdot 1.5}{2 \pi}\, {\rm &micro; s}\approx 7.31\, {\rm &micro;
 
  s}\hspace{0.05cm},$$
 
  s}\hspace{0.05cm},$$
und auf die Symboldauer&nbsp; $T = 0.1 \  &micro; \rm s$&nbsp; bezogen: &nbsp;  
+
and related to the symbol duration&nbsp; $T = 0.1 \  &micro; \rm s$:&nbsp; &nbsp;  
 
:$${\tau_{\rm P}}/{T} \hspace{0.15cm}\underline{ \approx 73}\hspace{0.05cm}.$$
 
:$${\tau_{\rm P}}/{T} \hspace{0.15cm}\underline{ \approx 73}\hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; Die Impulsantwort eines Koaxialkabels ist näherungsweise gleich&nbsp; $h_2(t)$, wenn das Kabel folgende charakteristische Kabeldämpfung aufweist:
+
'''(3)'''&nbsp; The impulse response of a coaxial cable is approximately equal to&nbsp; $h_2(t)$, if the cable has the following characteristic cable attenuation:
 
:$${a}_\star ={a}_2  =  \alpha_2 \cdot l \cdot \sqrt{{R}/{2}} =
 
:$${a}_\star ={a}_2  =  \alpha_2 \cdot l \cdot \sqrt{{R}/{2}} =
 
  1.1467\,\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot 1.5\,{\rm km} \cdot \sqrt{\frac{10\,{\rm MHz}}{2}}
 
  1.1467\,\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot 1.5\,{\rm km} \cdot \sqrt{\frac{10\,{\rm MHz}}{2}}
Line 110: Line 110:
  
  
'''(4)'''&nbsp; Richig sind die <u>Aussagen 1 und 2</u>:
+
'''(4)'''&nbsp; <u>Statements 1 and 2</u> are correct:
*Die Fouriertransformierte&nbsp; $H_1(f) = {\rm e}^{-A \hspace{0.05cm} \cdot \hspace{0.05cm} |f|}$ mit $A = 2 \hspace{0.05cm}\cdot \hspace{0.05cm} {a}_1/R$&nbsp; ist reell und gerade, so dass&nbsp; $h_1(t)$&nbsp; ebenfalls reell und gerade ist.  
+
*The Fourier transform&nbsp; $H_1(f) = {\rm e}^{-A \hspace{0.05cm} \cdot \hspace{0.05cm} |f|}$ with $A = 2 \hspace{0.05cm}\cdot \hspace{0.05cm} {a}_1/R$&nbsp; is real and even, so&nbsp; $h_1(t)$&nbsp; is also real and even.  
*Aufgrund der Tiefpass&ndash;Charakteristik von&nbsp; $H_1(f)$&nbsp; liegt das Maximum bei&nbsp; $t = 0$.  
+
*Due to the low&ndash;pass characteristic of&nbsp; $H_1(f)$,&nbsp; the maximum is at&nbsp; $t = 0$.  
*Die letzte Aussage ist dagegen falsch: &nbsp; Das Integral über&nbsp; $h_1(t)$&nbsp; im gesamten Zeitbereich&nbsp; $ \pm \infty$&nbsp; ist gleich&nbsp; $H_1(f=0) = 1$.
+
*The last statement, on the other hand, is incorrect: &nbsp; the integral over&nbsp; $h_1(t)$&nbsp; in the entire time domain&nbsp; $ \pm \infty$&nbsp; is equal to&nbsp; $H_1(f=0) = 1$.
  
  
  
  
'''(5)'''&nbsp; Richtig ist nur <u>der Lösungsvorschlag 1</u>:  
+
'''(5)'''&nbsp; Only <u>solution 1</u> is correct:  
*Die Teilimpulsantwort&nbsp;  $h_1(t ) \star h_2(t )$&nbsp; berücksichtigt den Einfluss von&nbsp; $\alpha_1$,&nbsp; $\alpha_2$&nbsp; und&nbsp; $\beta_2$&nbsp; und damit alle Terme, die zu Verzerrungen führen.  
+
*The partial impulse response&nbsp;  $h_1(t ) \star h_2(t )$&nbsp; takes into account the influence of&nbsp; $\alpha_1$,&nbsp; $\alpha_2$&nbsp; and&nbsp; $\beta_2$&nbsp; and thus all terms leading to distortions.
*Dagegen führt&nbsp; $\alpha_0$&nbsp; nur zu einer frequenzunabhängigen Dämpfung und&nbsp; $\beta_1$&nbsp; lediglich zu einer für alle Frequenzen konstanten Laufzeit.
+
*In contrast, &nbsp; $\alpha_0$&nbsp; leads only to a frequency-independent attenuation and&nbsp; $\beta_1$&nbsp; only to a constant running time for all frequencies.
*Der Lösungsvorschlag 2 trifft dagegen nicht zu: &nbsp;  Zunächst&nbsp; (bei kleinen&nbsp; $t$&ndash;Werten)&nbsp; ist&nbsp; $h_1(t ) \star h_2(t )$&nbsp; kleiner als&nbsp; $h_2(t )$. Bei großen&nbsp; $t$&ndash;Werten liegt dann die blaue Kurve oberhalb der roten.  
+
*Solution 2, on the other hand, does not apply: &nbsp;  first&nbsp; (for small&nbsp; $t$&ndash;values)&nbsp; &nbsp; $h_1(t ) \star h_2(t )$&nbsp; is smaller than&nbsp; $h_2(t )$. Then, for large&nbsp; $t$&ndash;values, the blue curve lies above the red one.
*Das bedeutet: &nbsp; $\alpha_1$&nbsp; und damit auch&nbsp; $h_1(t )$&nbsp; bewirken tatsächlich zusätzliche Verzerrungen,&nbsp; auch wenn diese nicht sehr ins Gewicht fallen.
+
*This means: &nbsp; $\alpha_1$&nbsp; and thus also&nbsp; $h_1(t )$&nbsp; actually cause additional distortions, even when they are not very significant.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 11:15, 22 November 2021

Impulse response of the copper twin wire

The time response of a copper twin wire with diameter  $d = 0.5 \ \rm mm$  is to be analyzed.

The frequency response with the line length  $l = 1.5 \ \rm km$  and the bit rate  $R = 10 \rm Mbit/s$:

$$H_{\rm K}(f) = {\rm e}^{-{\rm a}_0 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot \hspace{0.01cm}\tau_{\rm P}} \cdot {\rm e}^{-{\rm a}_1 \hspace{0.05cm}\cdot \hspace{0.02cm}2f/R}\cdot {\rm e}^{-{\rm a}_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}} \hspace{0.05cm}.$$

The following quantities are used, which can be derived from the damping and phase function per unit length:

$${a}_0 = \alpha_0 \cdot l\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\alpha_0 = 0.5066\,\, \frac{\rm Np}{\rm km}\hspace{0.05cm},$$
$$ \tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi} \hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\beta_1 = 30.6\,\, \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm},$$
$$ {a}_1 = \alpha_1 \cdot l \cdot {{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \alpha_1 = 0.136\,\, \frac{\rm Np}{\rm km \cdot MHz}\hspace{0.05cm},$$
$$ {a}_2 = \alpha_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \alpha_2 = 1.1467\,\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm},$$
$$ {b}_2 = \beta_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \beta_2 = 1.1467\,\, \frac{\rm rad}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm}.$$

The impulse response can thus be expressed in the form

$$h_{\rm K}(t ) = K \cdot \big [ \delta(t - \tau_{\rm P})\star h_{1}(t) \star h_{2}(t) \big ]$$

where

  • the partial impulse response  $h_1(t)$  is due to the third term in the above equation, and
  • $h_2(t)$  indicates the joint time-domain representation of the last two terms.


The graph shows as red curve the part  $h_2(t)$  of the impulse response and the convolution product  $h_1(t) \star h_2(t)$  ⇒   blue curve).
Here  $h_2(t)$  is equal to coaxial cable impulse response with the characteristic cable attenuation  ${a}_\star = {a}_2$.





Notes:

  • The parameters  $\alpha_0$,  $\alpha_1$ and  $\alpha_2$ were converted from the  $k$–parameters as shown in  Exercise 4.6  gezeigt.
  • The phase function parameter  $\beta_2$  was set here numerically equal to the attenuation function parameter  $\alpha_2$. 
  • Therefore, the attenuation component  ${a}_2$  and the phase component  ${b}_2$  differ only in units.
  • On the page  Discussion of the approximate solution found,  it is explained why this measure is necessary.
  • You can use the  (German language)  interactive SWF applet  "Zeitverhalten von Kupferkabeln"   ⇒   "Time behavior of copper cables"  to check your results.



Questions

1

Calculate the constant  $K$  of the impulse response  $h_{\rm K}(t )$.

$K \ = \ $

2

Calculate the phase delay  $\tau_P$, related to the symbol duration  $T$.

$\tau_P/T \ = \ $

3

What is the characteristic attenuation  $a_\star$  of the comparable coaxial cable?

$a_\star \ = \ $

$\ \rm dB$

4

What are the characteristics of the partial impulse response  $h_{\rm 1}(t )$ ?

$h_{\rm 1}(t )$  is an even function.
The maximum of  $h_{\rm 1}(t )$  is at  $t = 0$.
The integral over  $h_{\rm 1}(t )$  gives the value  $2$.

5

Which properties can you recognize in the function  $h_1(t ) \star h_2(t )$?

$h_1(t ) \star h_2(t )$  completely reproduces the distortions of  $h_{\rm K}(t )$. 
$h_1(t ) \star h_2(t )$  differs from  $h_{\rm K}(t )$  only by one factor.


Solution

(1)  With  $a_0 = \alpha_0 \cdot l \approx 0.76 \ \rm Np$,  for the constant  $K$, which indicates the influence of the coefficient  $ \alpha_0$  on the impulse response, we obtain:

$$K = {\rm e}^{-{a}_0 }= {\rm e}^{-0.76} \hspace{0.15cm}\underline{= 0.468} \hspace{0.05cm}.$$


(2)  For the phase delay, using the given equation:

$$\tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi}= \frac{30.6 \cdot 1.5}{2 \pi}\, {\rm µ s}\approx 7.31\, {\rm µ s}\hspace{0.05cm},$$

and related to the symbol duration  $T = 0.1 \ µ \rm s$:   

$${\tau_{\rm P}}/{T} \hspace{0.15cm}\underline{ \approx 73}\hspace{0.05cm}.$$


(3)  The impulse response of a coaxial cable is approximately equal to  $h_2(t)$, if the cable has the following characteristic cable attenuation:

$${a}_\star ={a}_2 = \alpha_2 \cdot l \cdot \sqrt{{R}/{2}} = 1.1467\,\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot 1.5\,{\rm km} \cdot \sqrt{\frac{10\,{\rm MHz}}{2}} = 2.93\,{\rm Np} = 2.93\,{\rm Np} \cdot8.686\,\frac {\rm dB}{\rm Np} \hspace{0.15cm}\underline{ =25.5\,{\rm dB}}\hspace{0.05cm}.$$


(4)  Statements 1 and 2 are correct:

  • The Fourier transform  $H_1(f) = {\rm e}^{-A \hspace{0.05cm} \cdot \hspace{0.05cm} |f|}$ with $A = 2 \hspace{0.05cm}\cdot \hspace{0.05cm} {a}_1/R$  is real and even, so  $h_1(t)$  is also real and even.
  • Due to the low–pass characteristic of  $H_1(f)$,  the maximum is at  $t = 0$.
  • The last statement, on the other hand, is incorrect:   the integral over  $h_1(t)$  in the entire time domain  $ \pm \infty$  is equal to  $H_1(f=0) = 1$.



(5)  Only solution 1 is correct:

  • The partial impulse response  $h_1(t ) \star h_2(t )$  takes into account the influence of  $\alpha_1$,  $\alpha_2$  and  $\beta_2$  and thus all terms leading to distortions.
  • In contrast,   $\alpha_0$  leads only to a frequency-independent attenuation and  $\beta_1$  only to a constant running time for all frequencies.
  • Solution 2, on the other hand, does not apply:   first  (for small  $t$–values)    $h_1(t ) \star h_2(t )$  is smaller than  $h_2(t )$. Then, for large  $t$–values, the blue curve lies above the red one.
  • This means:   $\alpha_1$  and thus also  $h_1(t )$  actually cause additional distortions, even when they are not very significant.