Difference between revisions of "Aufgaben:Exercise 2.2Z: Power Consideration"

From LNTwww
m
m
Line 23: Line 23:
 
''Hints:''  
 
''Hints:''  
 
*This exercise belongs to the chapter  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
 
*This exercise belongs to the chapter  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
*Particular reference is made to the chapter   [[Modulation_Methods/Quality_Criteria|Quality Criteria]].
+
*Reference is also made to the chapter   [[Modulation_Methods/Quality_Criteria|Quality Criteria]].
 
*Use the numerical values  $A_1 = 2\ \rm  V$,  $A_2 = 1 \ \rm V$  and  $R = 50 \ \rm Ω$.
 
*Use the numerical values  $A_1 = 2\ \rm  V$,  $A_2 = 1 \ \rm V$  and  $R = 50 \ \rm Ω$.
 
   
 
   
Line 29: Line 29:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Leistung des Cosinussignals &nbsp;$s_1(t)$.
+
{Calculate the power of the cosine signal &nbsp;$s_1(t)$.
 
|type="{}"}
 
|type="{}"}
 
$P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$
 
$P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$
  
{Es gelte &nbsp;$R = 50 \ \rm Ω$.&nbsp; Wie groß ist die physikalische Leistung des Signals  &nbsp;$s_1(t)$?  
+
{Let&nbsp;$R = 50 \ \rm Ω$.&nbsp; What is the physical power of the signal &nbsp;$s_1(t)$?  
 
|type="{}"}
 
|type="{}"}
 
$P_1 \ = \ $ { 40 3% } $\ \text{mW}$
 
$P_1 \ = \ $ { 40 3% } $\ \text{mW}$
  
{Wie groß ist die Leistung der phasenverschobenen Schwingung &nbsp;$s_2(t)$?
+
{What is the power of the phase-shifted oscillation &nbsp;$s_2(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_2  \ = \ $ { 0.5 3% } $\ \rm V^{ 2 }$
 
$P_2  \ = \ $ { 0.5 3% } $\ \rm V^{ 2 }$
  
{Wie groß ist die Leistung des Summensignals &nbsp;$s(t)$&nbsp; unter der Bedingung &nbsp;$f_2 ≠ f_1$?
+
{What is the power of the sum signal &nbsp;$s(t)$&nbsp; when &nbsp;$f_2 ≠ f_1$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 2.5 3% } $\ \rm V^{ 2 }$
 
$P_{\rm S} \ = \ $ { 2.5 3% } $\ \rm V^{ 2 }$
  
{Welche Leistung erhält man für &nbsp;$f_2 = f_1$&nbsp; mit &nbsp;$ϕ = 0$, &nbsp;$ϕ = 90^\circ$&nbsp; und &nbsp;$ϕ = 180^\circ$?
+
{What power is obtained for&nbsp;$f_2 = f_1$&nbsp; with &nbsp;$ϕ = 0$, &nbsp;$ϕ = 90^\circ$&nbsp; and &nbsp;$ϕ = 180^\circ$?
 
|type="{}"}
 
|type="{}"}
 
$ϕ = 0\text{:}\hspace{0.3cm}  P_{\rm S} \ = \ $ { 4.5 3% }$\ \rm V^{ 2 }$
 
$ϕ = 0\text{:}\hspace{0.3cm}  P_{\rm S} \ = \ $ { 4.5 3% }$\ \rm V^{ 2 }$
Line 55: Line 55:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Entsprechend den Gleichungen auf der Angabenseite gilt:
 
'''(1)'''&nbsp; Entsprechend den Gleichungen auf der Angabenseite gilt:

Revision as of 13:26, 24 November 2021

Analytical signal - line spectrum

Let us consider two harmonic oscillations

$$ s_1(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$
$$s_2(t) = A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$

where  $f_2 ≥ f_1$  should hold for the frequencies.

The graph shows the spectrum of the analytical signal  $s_+(t)$, which is additively composed of the two components  $s_{1+}(t)$  and  $s_ {2+}(t)$ .

Here, the transmission power  $P_{\rm S}$  should be understood as the root mean square value of the signal  $s(t)$  , averaged over the largest measurement period possible::

$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$

According to this definition, if  $s(t)$ describes a voltage waveform,  $P_{\rm S}$  has unit   $\rm V^2$  and refers to resistance  $R = 1 \ \rm Ω$.  Dividing by $R$  gives the physical power in   $\rm W$.




Hints:



Questions

1

Calculate the power of the cosine signal  $s_1(t)$.

$P_1 \ = \ $

$\ \rm V^{ 2 }$

2

Let $R = 50 \ \rm Ω$.  What is the physical power of the signal  $s_1(t)$?

$P_1 \ = \ $

$\ \text{mW}$

3

What is the power of the phase-shifted oscillation  $s_2(t)$?

$P_2 \ = \ $

$\ \rm V^{ 2 }$

4

What is the power of the sum signal  $s(t)$  when  $f_2 ≠ f_1$?

$P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$

5

What power is obtained for $f_2 = f_1$  with  $ϕ = 0$,  $ϕ = 90^\circ$  and  $ϕ = 180^\circ$?

$ϕ = 0\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$
$ϕ = 90^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$
$ϕ = 180^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$


Solution

(1)  Entsprechend den Gleichungen auf der Angabenseite gilt:

$$P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • Zur allgemeineren Berechnung ist die Phase  $ϕ_1$  berücksichtigt, die hier eigentlich Null ist.  Mit der Gleichung $\cos^{2}(α) = 0.5 · (1 + \cos(2α))$  ergibt sich:
$$ P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.$$
  • Der zweite Term liefert aufgrund der Integration über die Cosinusfunktion, der Division durch  $T_{\rm M}$  und dem anschließenden Grenzübergang unabhängig von der Phase  $ϕ_1$  keinen Beitrag. Damit erhält man:
$$P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.$$


(2)  Mit  $R = 50\ \rm Ω$  erhält man für die „unnormierte” Leistung:

$$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$


(3)  Bereits in der Musterlösung zur Teilaufgabe  (1)  wurde gezeigt, dass die Phase keinen Einfluss auf die Leistung hat.  Daraus folgt:

$$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$


(4)  Zur Leistungsberechnung muss über $s^{2}(t)$ gemittelt werden, wobei gilt:

$$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$
  • Aufgrund der Division durch die Messdauer  $T_{\rm M}$  und des erforderlichen Grenzübergangs liefert der letzte Term unabhängig von der Phase  $ϕ$  keinen Beitrag.  Deshalb:
$$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$


(5)  Mit  $f_2 = f_1$  lautet das Spektrum des analytischen Signals:

$$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$
  • Somit ergibt sich das Signal
$$s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},$$
dessen Phase  $ϕ_3$  für die Leistungsberechnung keine Rolle spielt.  Die Amplitude dieses Signals ist
$$A_3 = \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$
  • Für  $ϕ = 0$  addieren sich die Amplituden skalar:
$$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$
  • Dagegen addieren sich die Amplituden für  $ϕ = 90^\circ$  vektoriell  ⇒   gleiches Ergebnis wie in der Teilaufgabe  (4):
$$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
  • Für  $ϕ = 180^\circ$  überlagern sich die Cosinusschwingungen destruktiv:
$$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$