Difference between revisions of "Aufgaben:Exercise 2.3: DSB-AM Realization"
m |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:EN_Mod_A_2_3.png|right|frame| | + | [[File:EN_Mod_A_2_3.png|right|frame|Nonlinear characteristic curve <br>forr AM–realization]] |
− | + | In order to realize the so-called "DSB-AM with carrier", an amplifier with the characteristic curve | |
:y=g(x)=U⋅(1−e−x/U) | :y=g(x)=U⋅(1−e−x/U) | ||
− | + | must be used. Here, x=x(t) and y=y(t) are time-dependent voltages at the input and output of the amplifier, respectively. The parameter U=3 V indicates the saturation voltage of the amplifier. | |
− | + | This curve is operated at the operating point A0=2 V. This is achieved, for example, by the input signal | |
:x(t)=A0+z(t)+q(t). | :x(t)=A0+z(t)+q(t). | ||
− | + | Assume cosine oscillations for both the carrier and the source signal: | |
:z(t)=AT⋅cos(2πfTt),AT=1V,fT=30kHz, | :z(t)=AT⋅cos(2πfTt),AT=1V,fT=30kHz, | ||
:q(t)=AN⋅cos(2πfNt),AN=1V,fN=3kHz. | :q(t)=AN⋅cos(2πfNt),AN=1V,fN=3kHz. | ||
− | + | In solving this problem, use the auxiliary quantity | |
:w(t)=x(t)−A0=z(t)+q(t). | :w(t)=x(t)−A0=z(t)+q(t). | ||
− | + | The nonlinear characteristic curve can be developed according to a ''Taylor series'' around the operating point: | |
:$$y(x) = y(A_0) + \frac{1}{1!} \cdot y\hspace{0.08cm}{\rm '}(A_0) \cdot (x - A_0)+ \frac{1}{2!} \cdot y\hspace{0.08cm}''(A_0) \cdot (x - A_0)^2+ | :$$y(x) = y(A_0) + \frac{1}{1!} \cdot y\hspace{0.08cm}{\rm '}(A_0) \cdot (x - A_0)+ \frac{1}{2!} \cdot y\hspace{0.08cm}''(A_0) \cdot (x - A_0)^2+ | ||
\frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + \text{ ...}$$ | \frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + \text{ ...}$$ | ||
− | + | The output signal can then also be represented as depending on the auxiliary quantity w(t) as follows: | |
:y(t)=c0+c1⋅w(t)+c2⋅w2(t)+c3⋅w3(t)+ ... | :y(t)=c0+c1⋅w(t)+c2⋅w2(t)+c3⋅w3(t)+ ... | ||
− | + | The DSB–AM signal s(t) is obtained by band-limiting y(t) to the frequency range from 23 kHz to 37 kHz. That is, all frequencies other than fT, fT±fN and fT±2fN are removed by the bandpass. | |
− | + | he graph shows the characteristic curve g(x) and the approximations g1(x), g2(x) and g3(x), when the Taylor series is truncated after the first, second, or third term. It can be seen that the approximation g3(x) is indistinguishable from g(x) in the range shown. | |
Line 31: | Line 31: | ||
− | + | ''Hints:'' | |
− | '' | + | *This exercise belongs to the chapter [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]]. |
− | * | + | *Reference will also be made to the chapter [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions#Description_of_nonlinear_systems|Description of nonlinear systems]] in the book "Linear and Time Invariant Systems". |
− | * | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> |
Revision as of 17:58, 24 November 2021
In order to realize the so-called "DSB-AM with carrier", an amplifier with the characteristic curve
- y=g(x)=U⋅(1−e−x/U)
must be used. Here, x=x(t) and y=y(t) are time-dependent voltages at the input and output of the amplifier, respectively. The parameter U=3 V indicates the saturation voltage of the amplifier.
This curve is operated at the operating point A0=2 V. This is achieved, for example, by the input signal
- x(t)=A0+z(t)+q(t).
Assume cosine oscillations for both the carrier and the source signal:
- z(t)=AT⋅cos(2πfTt),AT=1V,fT=30kHz,
- q(t)=AN⋅cos(2πfNt),AN=1V,fN=3kHz.
In solving this problem, use the auxiliary quantity
- w(t)=x(t)−A0=z(t)+q(t).
The nonlinear characteristic curve can be developed according to a Taylor series around the operating point:
- y(x)=y(A0)+11!⋅y′(A0)⋅(x−A0)+12!⋅y″(A0)⋅(x−A0)2+13!⋅y‴(A0)⋅(x−A0)3+ ...
The output signal can then also be represented as depending on the auxiliary quantity w(t) as follows:
- y(t)=c0+c1⋅w(t)+c2⋅w2(t)+c3⋅w3(t)+ ...
The DSB–AM signal s(t) is obtained by band-limiting y(t) to the frequency range from 23 kHz to 37 kHz. That is, all frequencies other than fT, fT±fN and fT±2fN are removed by the bandpass.
he graph shows the characteristic curve g(x) and the approximations g1(x), g2(x) and g3(x), when the Taylor series is truncated after the first, second, or third term. It can be seen that the approximation g3(x) is indistinguishable from g(x) in the range shown.
Hints:
- This exercise belongs to the chapter Double-Sideband Amplitude Modulation.
- Reference will also be made to the chapter Description of nonlinear systems in the book "Linear and Time Invariant Systems".
Questions
Musterlösung
- Die Hilfsgröße w(t) kann somit Werte zwischen wmin=−2 V_ und wmax=+2 V_ annehmen.
(2) Der Koeffizient c0 ist gleich dem Kennlinienwert im Arbeitspunkt. Mit A0=2 V und U=3 V erhält man:
- c0=y(A0)=U⋅(1−e−A0/U)=1.460V_.
- Entsprechend gilt für den Taylorkoeffizienten c1:
- c1=y′(A0)=e−A0/U=0.513_.
(3) Die weiteren Ableitungen (n≥2) lauten:
- y(n)(A0)=(−1)n−1Un−1⋅e−A0/U.
- Daraus ergeben sich folgende Koeffizienten:
- c2=12!⋅y(2)(A0)=12U⋅e−A0/U=−0.086V−1_,
- c3=13!⋅y(3)(A0)=16U2⋅e−A0/U=0.0095V−2_.
(4) Setzt man c3=0, so lautet das Ausgangssignal des Verstärkers:
- y(t)=c0+c1⋅(z(t)+q(t))+c2⋅(z2(t)+q2(t)+2⋅z(t)⋅q(t)).
- Nach dem Bandpass verbleiben somit noch folgende Signalanteile:
- s(t)=c1⋅z(t)+2⋅c2⋅z(t)⋅q(t)=[c1⋅AT+2⋅c2⋅AT⋅AN⋅cos(ωNt)]⋅cos(ωTt).
- Der Modulationsgrad ist dann als Quotient der „Amplitude” der Nachrichtenschwingung zur „Amplitude” des Trägers zu bestimmen:
- m=2⋅|c2|⋅AT⋅AN|c1|⋅AT=2⋅|c2|⋅AN|c1|=2⋅0.086⋅1V0.513=0.335_.
(5) Richtig sind die Aussagen 2 und 3:
- Unter Berücksichtigung des kubischen Anteils beinhaltet y(t) noch folgende weitere Anteile:
- y3(t)=c3⋅(z(t)+q(t))3=c3⋅z3(t)+3⋅c3⋅z2(t)⋅q(t)+3⋅c3⋅z(t)⋅q2(t)+c3⋅q3(t).
- Der erste Term führt zu Anteilen bei fT und 3fT, der letzte bei fN und 3fN. Der zweite Term ergibt einen Anteil bei fN und weitere bei 2fT±fN:
- 3⋅c3⋅z2(t)⋅q(t)=3/2⋅A2T⋅AN⋅[cos(ωNt)+cos(2ωTt)⋅cos(ωNt)].
- Entsprechend führt der dritte Summand in obiger Gleichung zu
- 3⋅c3⋅z(t)⋅q2(t)=3/2⋅AT⋅A2N⋅[cos(ωTt)+cos(ωTt)⋅cos(2ωNt)].
- Innerhalb des Frequenzbereichs von 23 kHz bis 37 kHz kommt es also tatsächlich zu einer Veränderung der Spektrallinie bei fT und es entstehen neue Diraclinien bei fT±2fN, also bei 24 kHz und 36 kHz.
- Die dadurch verbundenen Verzerrungen sind somit nichtlinear ⇒ Antwort 3 ist richtig und Antwort 4 ist falsch.