Difference between revisions of "Aufgaben:Exercise 5.2: Band Spreading and Narrowband Interferer"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/PN–Modulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Direct-Sequence_Spread_Spectrum_Modulation
 
}}
 
}}
  
[[File:EN_Mod_A_5_2.png|right|frame|Betrachtetes Modell <br>der Bandspreizung]]
+
[[File:EN_Mod_A_5_2.png|right|frame|Considered model<br>
Betrachtet wird ein ''Spread Spectrum System''&nbsp; gemäß der vorliegenden Grafik im äquivalenten Tiefpassbereich:  
+
of the band spreading]]
*Das Digitalsignal &nbsp;$q(t)$&nbsp; besitze das Leistungsdichtespektrum &nbsp;${\it \Phi}_q(f)$, das als rechteckförmig mit der Bandbreite &nbsp;$B = 1/T = 100\ \rm  kHz$&nbsp; angenähert werden soll&nbsp; (eine eher unrealistische Annahme):
+
A ''Spread Spectrum System''&nbsp; is considered according to the given diagram in the equivalent low-pass range:  
 +
*Let the digital signal &nbsp;$q(t)$&nbsp; possess the power density spectrum &nbsp;${\it \Phi}_q(f)$, which is to be approximated as rectangular with bandwidth &nbsp;$B = 1/T = 100\ \rm  kHz$&nbsp;&nbsp; (a rather unrealistic assumption):
 
:$${\it \Phi}_{q}(f) =
 
:$${\it \Phi}_{q}(f) =
 
\left\{ \begin{array}{c} {\it \Phi}_{q0} \\
 
\left\{ \begin{array}{c} {\it \Phi}_{q0} \\
 
  0 \\  \end{array} \right.
 
  0 \\  \end{array} \right.
\begin{array}{*{10}c}    {\rm{f\ddot{u}r}}
+
\begin{array}{*{10}c}    {\rm{for}}
\\  {\rm{sonst}} \hspace{0.05cm}.  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{otherwise}} \hspace{0.05cm}.  \\ \end{array}\begin{array}{*{20}c}
 
|f| <B/2 \hspace{0.05cm}, \\
 
|f| <B/2 \hspace{0.05cm}, \\
 
  \\
 
  \\
 
\end{array}$$
 
\end{array}$$
*Im Tiefpassbereich ist somit die Bandbreite&nbsp; (nur die Anteile bei positiven Frequenzen)&nbsp; gleich &nbsp;$B/2$&nbsp; und die Bandbreite im Bandpassbereich ist &nbsp;$B$.
+
*Thus, in the low-pass range, the bandwidth&nbsp; (only the components at positive frequencies)&nbsp; is equal to &nbsp;$B/2$&nbsp; and the bandwidth in the bandpass range is &nbsp;$B$.
*Die Bandspreizung erfolgt durch Multiplikation mit der PN–Sequenz &nbsp;$c(t)$&nbsp; der Chipdauer &nbsp;$T_c = T/100$&nbsp; <br>("PN" steht dabei für "Pseudo Noise").  
+
*The band spreading is done by multiplication with the PN sequence &nbsp;$c(t)$&nbsp; of the chip duration &nbsp;$T_c = T/100$&nbsp; <br>("PN" stands for "pseudo-noise").  
*Für die Autokorrelationsfunktion gelte vereinfachend:
+
*To simplify matters, the following applies to the autocorrelation function:
:$$ {\it \varphi}_{c}(\tau) = \left\{ \begin{array}{c}1 - |\tau|/T_c \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{sonst}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} -T_c \le \tau \le T_c \hspace{0.05cm}, \\ \\ \end{array}$$
+
:$$ {\it \varphi}_{c}(\tau) = \left\{ \begin{array}{c}1 - |\tau|/T_c \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ {\rm{otherwise}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} -T_c \le \tau \le T_c \hspace{0.05cm}, \\ \\ \end{array}$$
*Beim Empfänger wird wieder die gleiche Spreizfolge &nbsp;$c(t)$&nbsp; phasensynchron zugesetzt.
+
*At the receiver, the same spreading sequence &nbsp;$c(t)$&nbsp; is again added in phase synchronism.
*Das Interferenzsignal &nbsp;$i(t)$&nbsp; soll zunächst vernachlässigt werden.  
+
*The interference signal &nbsp;$i(t)$&nbsp; is to be neglected for the time being.
*In der Teilaufgabe&nbsp; '''(4)'''&nbsp; bezeichnet &nbsp;$i(t)$&nbsp; einen schmalbandigen Störer bei der Trägerfrequenz &nbsp;$f_{\rm T} = 30 \ \rm MHz = f_{\rm I}$&nbsp; mit der Leistung &nbsp;$P_{\rm I}$.  
+
*In subtask&nbsp; '''(4)'''&nbsp; &nbsp;$i(t)$&nbsp; denotes a narrowband interferer at carrier frequency &nbsp;$f_{\rm T} = 30 \ \rm MHz = f_{\rm I}$&nbsp; with power &nbsp;$P_{\rm I}$.  
*Der Einfluss des&nbsp; (stets vorhandenen)&nbsp; AWGN–Rauschens &nbsp;$n(t)$&nbsp; wird in dieser Aufgabe nicht betrachtet.
+
*The influence of the&nbsp; (always present)&nbsp; AWGN noise &nbsp;$n(t)$&nbsp; is not considered in this exercise.
  
  
Line 30: Line 31:
  
  
''Hinweis:''  
+
''Note:''  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulation_Methods/PN–Modulation|PN–Modulation]].
+
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/PN–Modulation|Direct-Sequence Spread Spectrum Modulation]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet das Leistungsdichtespektrum &nbsp;${\it \Phi}_c(f )$&nbsp; des Spreizsignals &nbsp;$c(t)$?&nbsp; Welcher Wert ergibt sich bei der Frequenz &nbsp;$f = 0$?
+
{What is the power density spectrum &nbsp;${\it \Phi}_c(f )$&nbsp; of the spreading signal &nbsp;$c(t)$?&nbsp; What value results at the frequency &nbsp;$f = 0$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Phi}_c(f = 0) \ = \ $ { 0.1 3% } $\ \cdot 10^{-6} \ \rm 1/Hz$
 
${\it \Phi}_c(f = 0) \ = \ $ { 0.1 3% } $\ \cdot 10^{-6} \ \rm 1/Hz$
  
{Berechnen Sie die äquivalente Bandbreite &nbsp;$B_c$&nbsp; des Spreizsignals als Breite des flächengleichen LDS–Rechtecks.
+
{Calculate the equivalent bandwidth &nbsp;$B_c$&nbsp; of the spread signal as the width of the equal-area LDS rectangle.
 
|type="{}"}
 
|type="{}"}
 
$B_c \ = \ $ { 10 3% } $\ \rm MHz$
 
$B_c \ = \ $ { 10 3% } $\ \rm MHz$
  
{Welche Aussagen sind für die Bandbreiten der Signale &nbsp;$s(t)$ &nbsp; &rArr; &nbsp; $B_s$ und &nbsp;$b(t)$ &nbsp; &rArr; &nbsp; $B_b$ zutreffend?&nbsp; Die (zweiseitige) Bandbreite von &nbsp;$q(t)$&nbsp; ist &nbsp;$B$.
+
{Which statements are true for the bandwidths of the signals &nbsp;$s(t)$ &nbsp; &rArr; &nbsp; $B_s$ and &nbsp;$b(t)$ &nbsp; &rArr; &nbsp; $B_b$?&nbsp; The (two-sided) bandwidth of &nbsp;$q(t)$&nbsp; is &nbsp;$B$.
 
|type="[]"}
 
|type="[]"}
- $B_s$&nbsp; ist exakt gleich &nbsp;$B_c$.
+
- $B_s$&nbsp; is exactly equal to &nbsp;$B_c$.
+ $B_s$&nbsp; ist näherungsweise gleich &nbsp;$B_c + B$.
+
+ $B_s$&nbsp; is approximately equal to &nbsp;$B_c + B$.
- $B_b$&nbsp; ist exakt gleich &nbsp;$B_s$.
+
- $B_b$&nbsp; is exactly equal to &nbsp;$B_s$.
- $B_b$&nbsp; ist gleich &nbsp;$B_s + B_c = 2B_c + B$.
+
- $B_b$&nbsp; is equal to &nbsp;$B_s + B_c = 2B_c + B$.
+ $B_b$&nbsp; ist exakt gleich &nbsp;$B$.
+
+ $B_b$&nbsp; is exactly equal to &nbsp;$B$.
  
{Welchen Einfluss hat eine Bandspreizung auf einen schmalbandigen Störer bei der Trägerfrequenz?&nbsp; Es gelte also &nbsp;$f_{\rm I} = f_{\rm T}$.
+
{What is the effect of band spreading on a narrowband interferer at the carrier frequency?&nbsp; Let &nbsp;$f_{\rm I} = f_{\rm T}$.
 
|type="[]"}
 
|type="[]"}
+ Der störende Einfluss wird durch Bandspreizung abgeschwächt.
+
+ The interfering influence is weakened by band spreading.
- Die Störleistung ist nur mehr halb so groß.
+
- The interfering power is only half as large.
- Die Störleistung wird durch die Bandspreizung nicht verändert.
+
- The interfering power is not changed by band spreading.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Leistungsdichtesprektrum&nbsp; ${\it \Phi}_c(f)$&nbsp; ist die Fouriertransformierte der dreieckförmigen AKF, die mit Rechtecken der Breite&nbsp; $T_c$&nbsp; wie folgt dargestellt werden kann:
+
'''(1)'''&nbsp; The power density spectrum&nbsp; ${\it \Phi}_c(f)$&nbsp; is the Fourier transform of the triangular AKF, which can be represented with rectangles of width&nbsp; $T_c$&nbsp; as follows:
 
:$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \big(\frac{\tau}{T_c} \big ) \star {\rm rect} \big(\frac{\tau}{T_c} \big ) \hspace{0.05cm}.$$
 
:$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \big(\frac{\tau}{T_c} \big ) \star {\rm rect} \big(\frac{\tau}{T_c} \big ) \hspace{0.05cm}.$$
*Daraus folgt &nbsp;${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] = T_c \cdot {\rm si}^2 \left(\pi f T_c \right ) \hspace{0.05cm}$&nbsp; mit dem Maximalwert
+
*From this follows &nbsp;${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] = T_c \cdot {\rm si}^2 \left(\pi f T_c \right ) \hspace{0.05cm}$&nbsp; with maximum value
 
:$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$
 
:$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$
  
  
  
[[File:P_ID1869__Mod_A_5_2b.png|right|frame|Leistungsdichtespektrum des PN–Spreizsignals]]
+
[[File:P_ID1869__Mod_A_5_2b.png|right|frame|Power density spectrum of the PN spread signal]]
'''(2)'''&nbsp; Gemäß Definition gilt mit&nbsp; $T_c = T/100 = 0.1\ \rm  &micro; s$:
+
'''(2)'''&nbsp; By definition, with&nbsp; $T_c = T/100 = 0.1\ \rm  &micro; s$:
 
:$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm si}^2 \left(\pi f T_c \right )\hspace{0.1cm} {\rm d}f $$
 
:$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm si}^2 \left(\pi f T_c \right )\hspace{0.1cm} {\rm d}f $$
 
:$$\Rightarrow \hspace{0.3cm} B_c=  = \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$
 
:$$\Rightarrow \hspace{0.3cm} B_c=  = \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$
Die Grafik verdeutlicht,  
+
The graph illustrates,
*dass&nbsp; $B_c$&nbsp; durch die erste Nullstelle der&nbsp; $\rm si^2$–Funktion im äquivalenten Tiefpassbereich vorgegeben wird,
+
*that&nbsp; $B_c$&nbsp; is given by the first zero of the&nbsp; $\rm si^2$ function in the equivalent low-pass range,
* aber auch gleichzeitig die äquivalente&nbsp; (flächengleiche)&nbsp; Bandbreite im Bandpassbereich angibt.
+
*but at the same time also gives the equivalent&nbsp; (equal area)&nbsp; bandwidth in the bandpass region.
  
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 5</u>:
+
'''(3)'''&nbsp; <u>Solutions 2 and 5</u> are correct:
*Das LDS&nbsp; ${\it \Phi}_s(f)$&nbsp; ergibt sich aus der Faltung von&nbsp; ${\it \Phi}_q(f)$&nbsp; und&nbsp; ${\it \Phi}_c(f)$.&nbsp; Damit erhält man für die Bandbreite des Sendesignals tatsächlich&nbsp; $B_s = B_c + B$.  
+
*The LDS&nbsp; ${\it \Phi}_s(f)$&nbsp; results from the convolution of&nbsp; ${\it \Phi}_q(f)$&nbsp; and&nbsp; ${\it \Phi}_c(f)$.&nbsp; This actually gives&nbsp; $B_s = B_c + B$ for the bandwidth of the transmitted signal.  
*Da das Spreizsignal&nbsp; $c(t) ∈ \{+1, –1\}$&nbsp; mit sich selbst multipliziert immer den Wert&nbsp; $1$&nbsp; ergibt, ist natürlich&nbsp; $b(t) ≡ q(t)$&nbsp; und demzufolge&nbsp; $B_b = B$.  
+
*Since the spreading signal&nbsp; $c(t) ∈ \{+1, –1\}$&nbsp; multiplied by itself always gives the value&nbsp; $1$,&nbsp; naturally&nbsp; $b(t) ≡ q(t)$&nbsp; and consequently&nbsp; $B_b = B$.  
*Offensichtlich ist, dass die Bandbreite&nbsp; $B_b$&nbsp; des bandgestauchten Signals ungleich&nbsp; $2B_c + B$&nbsp; ist, obwohl die Faltung&nbsp; ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$&nbsp; dies suggeriert.  
+
*Obviously, the bandwidth&nbsp; $B_b$&nbsp; of the band compressed signal is not equal to&nbsp; $2B_c + B$,&nbsp; although the convolution&nbsp; ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$&nbsp; suggests this.
*Dies hängt damit zusammen, dass nicht die Leistungsdichtespektren gefaltet werden dürfen, sondern von den Spektralfunktionen&nbsp; (Amplitudenspektren)&nbsp; $S(f)$&nbsp; und&nbsp; $C(f)$&nbsp; unter Berücksichtigung der Phasenbeziehungen auszugehen ist.  
+
*This is due to the fact that the power density spectra must not be convolved, but the spectral functions&nbsp; (amplitude spectra)&nbsp; $S(f)$&nbsp; and&nbsp; $C(f)$&nbsp; must be assumed, taking into account the phase relations.
*Erst danach kann aus&nbsp; $B(f)$&nbsp; das LDS&nbsp; ${\it \Phi}_b(f)$&nbsp; bestimmt werden.&nbsp; Es gilt offensichtlich auch:&nbsp; $C(f) ∗ C(f) = δ(f)$.  
+
*Only then can the LDS&nbsp; $B(f)$&nbsp; be determined from&nbsp; ${\it \Phi}_b(f)$.&nbsp; Clearly, the following is also true:&nbsp; $C(f) ∗ C(f) = δ(f)$.  
  
  
  
'''(4)'''&nbsp; Richtig ist nur der <u>erste Lösungsvorschlag</u>. Die Lösung soll anhand der Skizze am Seitenende verdeutlicht werden:  
+
'''(4)'''&nbsp; Only the <u>first solution</u> is correct. The solution shall be clarified by the diagram at the end of the page:
*Im oberen Diagramm ist das LDS&nbsp; ${\it \Phi}_i(f)$&nbsp; des Schmalbandstörers durch zwei Diracfunktionen bei&nbsp; $±f_{\rm T}$&nbsp; mit Gewichten&nbsp; $P_{\rm I}/2$&nbsp; angenähert.&nbsp; Eingezeichnet ist auch die Bandbreite&nbsp; $B = 0.1 \ \rm MHz$&nbsp; (nicht ganz maßstäblich).
+
*In the upper diagram the LDS&nbsp; ${\it \Phi}_i(f)$&nbsp; of the narrowband interferer is approximated by two Dirac functions at&nbsp; $±f_{\rm T}$&nbsp; with weights&nbsp; $P_{\rm I}/2$.&nbsp;&nbsp; Also plotted is the bandwidth&nbsp; $B = 0.1 \ \rm MHz$&nbsp; (not quite true to scale).
  
*Die empfängerseitige Multiplikation mit&nbsp; $c(t)$&nbsp; – eigentlich mit der Funktion der Bandstauchung, zumindest bezüglich des Nutzanteils von&nbsp; $r(t)$ – bewirkt hinsichtlich des Störsignals&nbsp; $i(t)$&nbsp; eine Bandspreizung.&nbsp; Ohne Berücksichtigung des Nutzsignals ist&nbsp; $b(t) = n(t) = i(t) · c(t)$.&nbsp; Daraus folgt:
+
*The receiver-side multiplication with&nbsp; $c(t)$&nbsp; – actually with the function of the band compression, at least with respect to the useful part of&nbsp; $r(t)$ – causes a band spreading with respect to the interference signal&nbsp; $i(t)$.&nbsp;Without considering the useful signal,&nbsp; $b(t) = n(t) = i(t) · c(t)$.&nbsp; It follows:
 
:$${\it \Phi}_{n}(f)  =  {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) =  \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
 
:$${\it \Phi}_{n}(f)  =  {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) =  \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
[[File:P_ID1870__Mod_A_5_2c.png|right|frame|Leistungsdichtespektren vor und nach der Bandspreizung]]
+
[[File:P_ID1870__Mod_A_5_2c.png|right|frame|Power density spectra before and after band spreading]]
  
*Anzumerken ist, dass&nbsp; $n(t)$&nbsp; hier nur als Abkürzung verwendet wird und nicht AWGN–Rauschen bezeichnet.&nbsp;  
+
*Note that&nbsp; $n(t)$&nbsp; is used here only as an abbreviation and does not denote AWGN noise. &nbsp;  
*In einem engen Bereich um die Trägerfrequenz&nbsp; $f_{\rm T} = 30 \ \rm MHz$&nbsp; ist das LDS&nbsp; ${\it \Phi}_n(f)$&nbsp; nahezu konstant.&nbsp; Damit gilt für die Störleistung nach der Bandspreizung:
+
*In a narrow range around the carrier frequency&nbsp; $f_{\rm T} = 30 \ \rm MHz$,&nbsp; the LDS&nbsp; ${\it \Phi}_n(f)$&nbsp; is almost constant.&nbsp; Thus, the interference power after band spreading is:
 
:$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
 
:$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
*Das bedeutet: &nbsp; Die Störleistung wird durch Bandspreizung um den Faktor&nbsp; $J = T/T_c$&nbsp; herabgesetzt, weshalb&nbsp; $J$&nbsp; häufig auch als Spreizgewinn bezeichnet wird.  
+
*This means: &nbsp; the interference power is reduced by the factor&nbsp; $J = T/T_c$&nbsp; by band spreading, which is why&nbsp; $J$&nbsp; is often called spreading gain.
*Ein solcher Spreizgewinn ist allerdings nur bei einem Schmalbandstörer gegeben.
+
*However, such a spreading gain is only given for a narrowband interferer.
  
  

Revision as of 14:48, 29 November 2021

Considered model
of the band spreading

A Spread Spectrum System  is considered according to the given diagram in the equivalent low-pass range:

  • Let the digital signal  $q(t)$  possess the power density spectrum  ${\it \Phi}_q(f)$, which is to be approximated as rectangular with bandwidth  $B = 1/T = 100\ \rm kHz$   (a rather unrealistic assumption):
$${\it \Phi}_{q}(f) = \left\{ \begin{array}{c} {\it \Phi}_{q0} \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ {\rm{otherwise}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} |f| <B/2 \hspace{0.05cm}, \\ \\ \end{array}$$
  • Thus, in the low-pass range, the bandwidth  (only the components at positive frequencies)  is equal to  $B/2$  and the bandwidth in the bandpass range is  $B$.
  • The band spreading is done by multiplication with the PN sequence  $c(t)$  of the chip duration  $T_c = T/100$ 
    ("PN" stands for "pseudo-noise").
  • To simplify matters, the following applies to the autocorrelation function:
$$ {\it \varphi}_{c}(\tau) = \left\{ \begin{array}{c}1 - |\tau|/T_c \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{for}} \\ {\rm{otherwise}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} -T_c \le \tau \le T_c \hspace{0.05cm}, \\ \\ \end{array}$$
  • At the receiver, the same spreading sequence  $c(t)$  is again added in phase synchronism.
  • The interference signal  $i(t)$  is to be neglected for the time being.
  • In subtask  (4)   $i(t)$  denotes a narrowband interferer at carrier frequency  $f_{\rm T} = 30 \ \rm MHz = f_{\rm I}$  with power  $P_{\rm I}$.
  • The influence of the  (always present)  AWGN noise  $n(t)$  is not considered in this exercise.





Note:


Questions

1

What is the power density spectrum  ${\it \Phi}_c(f )$  of the spreading signal  $c(t)$?  What value results at the frequency  $f = 0$?

${\it \Phi}_c(f = 0) \ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$

2

Calculate the equivalent bandwidth  $B_c$  of the spread signal as the width of the equal-area LDS rectangle.

$B_c \ = \ $

$\ \rm MHz$

3

Which statements are true for the bandwidths of the signals  $s(t)$   ⇒   $B_s$ and  $b(t)$   ⇒   $B_b$?  The (two-sided) bandwidth of  $q(t)$  is  $B$.

$B_s$  is exactly equal to  $B_c$.
$B_s$  is approximately equal to  $B_c + B$.
$B_b$  is exactly equal to  $B_s$.
$B_b$  is equal to  $B_s + B_c = 2B_c + B$.
$B_b$  is exactly equal to  $B$.

4

What is the effect of band spreading on a narrowband interferer at the carrier frequency?  Let  $f_{\rm I} = f_{\rm T}$.

The interfering influence is weakened by band spreading.
The interfering power is only half as large.
The interfering power is not changed by band spreading.


Solution

(1)  The power density spectrum  ${\it \Phi}_c(f)$  is the Fourier transform of the triangular AKF, which can be represented with rectangles of width  $T_c$  as follows:

$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \big(\frac{\tau}{T_c} \big ) \star {\rm rect} \big(\frac{\tau}{T_c} \big ) \hspace{0.05cm}.$$
  • From this follows  ${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] = T_c \cdot {\rm si}^2 \left(\pi f T_c \right ) \hspace{0.05cm}$  with maximum value
$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$


Power density spectrum of the PN spread signal

(2)  By definition, with  $T_c = T/100 = 0.1\ \rm µ s$:

$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm si}^2 \left(\pi f T_c \right )\hspace{0.1cm} {\rm d}f $$
$$\Rightarrow \hspace{0.3cm} B_c= = \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$

The graph illustrates,

  • that  $B_c$  is given by the first zero of the  $\rm si^2$ function in the equivalent low-pass range,
  • but at the same time also gives the equivalent  (equal area)  bandwidth in the bandpass region.



(3)  Solutions 2 and 5 are correct:

  • The LDS  ${\it \Phi}_s(f)$  results from the convolution of  ${\it \Phi}_q(f)$  and  ${\it \Phi}_c(f)$.  This actually gives  $B_s = B_c + B$ for the bandwidth of the transmitted signal.
  • Since the spreading signal  $c(t) ∈ \{+1, –1\}$  multiplied by itself always gives the value  $1$,  naturally  $b(t) ≡ q(t)$  and consequently  $B_b = B$.
  • Obviously, the bandwidth  $B_b$  of the band compressed signal is not equal to  $2B_c + B$,  although the convolution  ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$  suggests this.
  • This is due to the fact that the power density spectra must not be convolved, but the spectral functions  (amplitude spectra)  $S(f)$  and  $C(f)$  must be assumed, taking into account the phase relations.
  • Only then can the LDS  $B(f)$  be determined from  ${\it \Phi}_b(f)$.  Clearly, the following is also true:  $C(f) ∗ C(f) = δ(f)$.


(4)  Only the first solution is correct. The solution shall be clarified by the diagram at the end of the page:

  • In the upper diagram the LDS  ${\it \Phi}_i(f)$  of the narrowband interferer is approximated by two Dirac functions at  $±f_{\rm T}$  with weights  $P_{\rm I}/2$.   Also plotted is the bandwidth  $B = 0.1 \ \rm MHz$  (not quite true to scale).
  • The receiver-side multiplication with  $c(t)$  – actually with the function of the band compression, at least with respect to the useful part of  $r(t)$ – causes a band spreading with respect to the interference signal  $i(t)$. Without considering the useful signal,  $b(t) = n(t) = i(t) · c(t)$.  It follows:
$${\it \Phi}_{n}(f) = {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) = \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
Power density spectra before and after band spreading
  • Note that  $n(t)$  is used here only as an abbreviation and does not denote AWGN noise.  
  • In a narrow range around the carrier frequency  $f_{\rm T} = 30 \ \rm MHz$,  the LDS  ${\it \Phi}_n(f)$  is almost constant.  Thus, the interference power after band spreading is:
$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
  • This means:   the interference power is reduced by the factor  $J = T/T_c$  by band spreading, which is why  $J$  is often called spreading gain.
  • However, such a spreading gain is only given for a narrowband interferer.