Difference between revisions of "Aufgaben:Exercise 2.9: Symmetrical Distortions"

From LNTwww
m
m
Line 62: Line 62:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Anhand der Grafiken auf der Angabenseite sind folgende Aussagen möglich:
+
'''(1)'''  On the basis of the graphs on the exercise page, the following statements can be made:
 
:$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$  
 
:$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$  
 
:$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
 
:$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
Line 69: Line 69:
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:
+
'''(2)'''&nbsp; <u>Answer 3</u> is correct:
*Der Modulationsgrad ergibt sich zu&nbsp; $m = (A_1 + A_2)/A_T = 1.75$.  
+
*The resulting modulation depth is &nbsp; $m = (A_1 + A_2)/A_T = 1.75$.  
*Damit ergeben sich bei Verwendung eines Hüllkurvendemodulators starke nichtlineare Verzerrungen.  
+
*This leads to strong nonlinear distortion when using an envelope demodulator.
*Ein Klirrfaktor kann aber nicht angegeben werden, da das Quellensignal zwei Frequenzanteile beinhaltet.
+
*A distortion factor cannot be specified because the source signal contains two frequency components.
  
  
  
  
'''(3)'''&nbsp; Richtig sind <u>die Aussagen 1 und 2</u>:
+
'''(3)'''&nbsp; <u>Answers 1 and 2</u> are correct:
*Die Fourierrücktransformation von&nbsp; $R_{\rm TP}(f)$&nbsp; führt zum Ergebnis:
+
*The Fourier retransform of &nbsp; $R_{\rm TP}(f)$&nbsp; gives us the result:
 
:$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
 
:$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
*Diese Funktion ist stets reell und nicht–negativ.  
+
*This function is always real and non-negativ.  
*Damit gilt gleichzeitig&nbsp; $ϕ(t) = 0$.&nbsp; Dagegen ist&nbsp; $ϕ(t) = 180^\circ$&nbsp; nicht möglich.  
+
*Thus, &nbsp; $ϕ(t) = 0$.&nbsp; holds simultaneously, whereas&nbsp; $ϕ(t) = 180^\circ$&nbsp; is not possible.
  
  
  
  
'''(4)'''&nbsp; Ein Vergleich der beiden Signale
+
'''(4)'''&nbsp; A comparison of the two signals
 
:$$q(t)  =  3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
 
:$$q(t)  =  3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
 
:$$ v(t)  =  0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
 
:$$ v(t)  =  0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
:zeigt, dass nun lineare Verzerrungen genauer gesagt Dämpfungsverzerrungen – auftreten &nbsp; &rArr; &nbsp;  <u>Lösungsvorschlag 2</u>.
+
:shows, that linear distortions now arise attenuation distortions to be precise  &nbsp; &rArr; &nbsp;  <u>Answer 2</u>.
  
*Der Kanal&nbsp; $H_{\rm K}(f)$&nbsp; hat hier den positiven Effekt, dass anstelle von irreversiblen nichtlinearen Verzerrungen nun lineare Verzerrungen entstehen, die durch ein nachgeschaltetes Filter eliminiert werden können.  
+
*Here, the channel&nbsp; $H_{\rm K}(f)$&nbsp; has the positive effect, that instead of irreversible nonlinear distortions, linear distortions occur that can be eliminated by a downstream filter.
*Dies ist darauf zurückzuführen, dass durch die stärkere Dämpfung des Quellensignals&nbsp; $q(t)$&nbsp; im Vergleich zum Trägersignal&nbsp; $z(t)$&nbsp; der Modulationsgrad von&nbsp; $m = 1.75$&nbsp; auf&nbsp; $m = (0.4 · 3 \ \rm  V + 0.2 · 4 \ \rm  V)/(0.5 · 4 \ \rm  V) = 1$&nbsp; herabgesetzt wird.
+
*This is due to the fact that the higher attenuation of the source signal&nbsp; $q(t)$&nbsp; compared to the carrier signal&nbsp; $z(t)$&nbsp; lowers the modulation depth from n&nbsp; $m = 1.75$&nbsp; to&nbsp; $m = (0.4 · 3 \ \rm  V + 0.2 · 4 \ \rm  V)/(0.5 · 4 \ \rm  V) = 1$&nbsp;.
  
  

Revision as of 21:23, 20 December 2021

Transmitter and receiver spectrum in the equivalent low-pass region

The source signal made up of two components

$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$

is amplitude modulated and transmitted through a linearly distorting transmission channel.  The carrier frequency is  $f_{\rm T}$  and the added DC component  $A_{\rm T}$.  Thus, a  Double-sideband amplitude moduluation  $\rm (DSB–AM)$ with carrier  is present.

The upper graph shows the spectrum  $S_{\rm TP}(f)$  of the equivalent low-pass signal in schematic form. This means that the lengths of the Dirac lines drawn do not correspond to the actual values of  $A_{\rm T}$,  $A_1/2$  and  $A_2/2$ .


The spectral function  $R(f)$  of the received signal was measured. In the lower graph we can observe the equivalent low-pass spectrum  $R_{\rm TP}(f)$ calculated from this.

The channel frequency response is characterised with sufficient accuracy with a few auxiliary values:

$$ H_{\rm K}(f = f_{\rm T}) = 0.5,$$
$$H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,$$
$$ H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$





Hints:


Questions

1

Give the amplitudes of the carrier and source signal.

$A_{\rm T} \ = \hspace{0.17cm} $

$\ \rm V$
$A_1 \ = \ $

$\ \rm V$
$A_2 \ = \ $

$\ \rm V$

2

Which kind of distortion would the application of an envelope demodulator in an ideal channel   ⇒   $H_{\rm K}(f) = 1$  lead to?

No distortion.
Linear distortions.
Nonlinear distortions.

3

Calculate the equivalent lowpass signal and answer the following questions. Is it true that...

$r_{\rm TP}(t)$  is always real,
$r_{\rm TP}(t)$  is always greater than or equal to zero,
the phase function  $ϕ(t)$  can take on the values  $0^\circ$  and  $180^\circ$ .

4

Which kind of distortion does the envelope demodulator in the observed transmission channel lead to?

No distortion.
Linear distortions.
Nonlinear distortions.


Solution

(1)  On the basis of the graphs on the exercise page, the following statements can be made:

$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$
$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
$${A_{\rm 2}}/{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$


(2)  Answer 3 is correct:

  • The resulting modulation depth is   $m = (A_1 + A_2)/A_T = 1.75$.
  • This leads to strong nonlinear distortion when using an envelope demodulator.
  • A distortion factor cannot be specified because the source signal contains two frequency components.



(3)  Answers 1 and 2 are correct:

  • The Fourier retransform of   $R_{\rm TP}(f)$  gives us the result:
$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
  • This function is always real and non-negativ.
  • Thus,   $ϕ(t) = 0$.  holds simultaneously, whereas  $ϕ(t) = 180^\circ$  is not possible.



(4)  A comparison of the two signals

$$q(t) = 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
$$ v(t) = 0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
shows, that linear distortions now arise – attenuation distortions to be precise   ⇒   Answer 2.
  • Here, the channel  $H_{\rm K}(f)$  has the positive effect, that instead of irreversible nonlinear distortions, linear distortions occur that can be eliminated by a downstream filter.
  • This is due to the fact that the higher attenuation of the source signal  $q(t)$  compared to the carrier signal  $z(t)$  lowers the modulation depth from n  $m = 1.75$  to  $m = (0.4 · 3 \ \rm V + 0.2 · 4 \ \rm V)/(0.5 · 4 \ \rm V) = 1$ .