Difference between revisions of "Aufgaben:Exercise 2.11: Envelope Demodulation of an SSB Signal"

From LNTwww
m
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Einseitenbandmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Single-Sideband_Modulation
 
}}
 
}}
  

Revision as of 17:55, 31 March 2022

(Normalized) envelope in
Single-sideband modulation

Let us consider the transmission of the cosine signal

q(t)=ANcos(ωNt)

according to the modulation method  USBAM  ("upper-sideband amplitude modulation")  with carrier.  At the receiver,  the high frequency range (HF) is reset to the low frquency range (LF) with an   envelope demodulator.

The channel is assumed to be ideal such that the received signal  r(t)  is identical to the transmitted signal  s(t) .  With the sideband-to-carrier ratio

μ=AN2AT

the equivalent low-pass signal  (German:  "äquivalentes Tiefpass-Signal"   ⇒   subscript:  "TP")  can be written as:

rTP(t)=AT(1+μejωNt)

The envelope – i.e.,  the magnitude of this complex signal – can be determined by geometric considerations.  Independent of the parameter  μ,  one obtains:

a(t)=AT1+μ2+2μcos(ωNt).

The time-independent envelope  a(t)  for  μ=1  and  μ=0.5  is shown in the graph.  In each case,  the amplitude-matched cosine oscillations,  which would be a prerequisite for distortion-free demodulation,  are plotted as dashed comparison curves.

  • The periodic signal  a(t)  can be approximated by a  Fourier series :
a(t)=A0+A1cos(ωNt)+A2cos(2ωNt)+A3cos(3ωNt)+...
  • The Fourier coefficients were determined using a simulation program.   With  μ=1  the following values were obtained:
A0=1.273V,A1=0.849V,A2=0.170V,A3=0.073V,A4=0.040V.
  • Accordingly,  for  μ=0.5,  the simulation yielded:
A0=1.064V,A1=0.484V,A2=0.058V.
The values not given here can be ignored when calculating of the distortion factor.
  • The sink signal  v(t)  is obtained from  a(t)  as follows:
v(t)=2[a(t)A0].
The factor of  2  corrects for the amplitude loss due to  "single-sideband amplitude modulation",  while the subtraction of the DC signal coefficient  A0  takes into account the influence of the high-pass within the envelope demodulator.
  • In questions  (1)  to  (3),  it is assumed that  AN=2 V, AT=1 V   ⇒   μ=1
    whereas from question  (4),   AN=AT=1 V  should apply for the parameter  μ=0.5.



Hints:

  • This exercise belongs to the chapter  Single-Sideband Modulation.
  • Particular reference is made to the page   Sideband-to-carrier ratio.
  • Also compare your results to the rule of thumb which states that
    "for the envelope demodulation of an SSB-AM signal with sideband-to-carrier ratio  μ,  the distortion factor is  Kμ/4".




Questions

1

Give the maximum and minimum values of the sink signal  v(t)  when  μ=1.

vmax = 

 V
vmin = 

 V

2

Calculate the distortion factor when  μ=1.

K = 

 %

3

How can you recognize the nonlinear distortions in the present signal  v(t)?

The lower cosine half-wave is more peaked than the upper one.
The DC component  Ε[v(t)]=0.

4

Give the maximum and minimum values of the sink signal  v(t)  when  μ=0.5.

vmax = 

 V
vmin = 

 V

5

Calculate the distortion factor when  μ=0.5.

K = 

 %

6

What is the upper bound  Kmax  of the distortion factor in  "double-sideband amplitude modulation"  (DSB-AM)  with  m=0.5 
and envelope demodulation,  if one sideband is completely damped by the channel.

Kmax = 

 %


Solution

(1)  The maximum value   amax=2 V  and the minimum value   amin=0  can be read of the graph or calculated using the equation given:

amax=AT1+μ2+2μ=AT(1+μ)=2V,
amin=AT1+μ22μ=AT(1μ)=0.
  • For the two extreme values of the sink signal it follows:
vmax=2[amaxA0]=2[2V1.273V]=1.454V_,
vmin=2A0=2.546V_.


(2)  Ignoring the Fourier coefficients   A5A6,  etc., we obtain:

K=A22+A23+A24A1=0.1702+0.0732+0.0402V0.849V22.3%_.
  • Here,  the approximation  Kμ/4  yields the value 25%.


(3)  Only the  first answer  is correct.

  • Due to the high-pass within the envelope demodulator,  the DC signal component would also be equal to zero if no distortions were present.



(4)  Like in subtask  (1)  here it holds that:

vmax=2[amaxA0]=2[1.5V1.064V]=0.872V_,
vmin=2A0=2.128V_.


(5)  A smaller sideband-to-carrier ratio also results in a smaller distortion factor:

K=0.058V0.484V12%_.
  • The simple approximation   Kμ/4  yields here  12.5%.
  • It can be concluded that the above rule of thumb is more accurate for smaller values of   μ.


(6)  Thus,  the distortion factor is largest when one of the sidebands is entirely cut out.

  • However,  since the envelope demodulator has no information to distinguish between
  1. a SSB–AM, or
  2. a DSB-AM which has been extremely affected by the channel,
simultaneously provides  Kmaxμ/4  an upper bound for the DSB-AM.
  • A comparison of the parameters  m=AN/AT  and  μ=AN/(2AT)  leads to the result:
Kmax=μ4=m8=6.25%_.