Difference between revisions of "Aufgaben:Exercise 1.4: Nyquist Criteria"

From LNTwww
Line 24: Line 24:
 
\\  {\rm{for}}\hspace{0.15cm}|f| > f_0  \hspace{0.08cm} \\
 
\\  {\rm{for}}\hspace{0.15cm}|f| > f_0  \hspace{0.08cm} \\
 
\end{array} \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} x(t)
 
\end{array} \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} x(t)
=2 \cdot A \cdot f_0 \cdot {\rm sinc}(2 f_0 T) \hspace{0.05cm},$$
+
=2 \cdot A \cdot f_0 \cdot {\rm si}(2 \pi f_0 T) \hspace{0.05cm},\hspace{0.4cm} {\rm si} (x) = \sin(x)/x\hspace{0.05cm},$$
 
:$$\sin(\alpha) \cdot \cos (\beta)  =  \frac{1}{2} \cdot \big[ \sin(\alpha - \beta) + \sin(\alpha + \beta)\big]
 
:$$\sin(\alpha) \cdot \cos (\beta)  =  \frac{1}{2} \cdot \big[ \sin(\alpha - \beta) + \sin(\alpha + \beta)\big]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 62: Line 62:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  The following diagram shows the spectrum (the index "Per" here stands for "Periodic Continuation"):
+
'''(1)'''  The following diagram shows the spectrum  (the index  "Per"  here stands for  "Periodic Continuation"):
 +
[[File:P_ID1280__Dig_A_1_4a.png|right|frame|Illustration of the first Nyquist criterion]]
 +
 
 
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} G(f -
 
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} G(f -
 
\frac{k}{T} ) \hspace{0.05cm}.$$
 
\frac{k}{T} ) \hspace{0.05cm}.$$
*The indexing variable $k = 0$ indicates the original spectral function $G(f)$. This is filled in gray.
+
*The indexing variable  $k = 0$  indicates the original spectral function  $G(f)$.  This is filled in gray.
*The spectrum shifted to the right by the value $1/T = 10\, \rm kHz$ belongs to $k = 1$ and is marked in green, while $k =  -1$ leads to the function highlighted in yellow.
+
*The spectrum shifted to the right by the value  $1/T = 10\, \rm kHz$  belongs to  $k = 1$  and is marked in green,  while  $k =  -1$  leads to the function highlighted in yellow.
*The red and blue areas mark the contributions of the indexing variables $k = 2$ and $k = - 2$.
+
*The red and blue areas mark the contributions of the indexing variables  $k = 2$  and  $k = - 2$.
  
  
[[File:P_ID1280__Dig_A_1_4a.png|center|frame|Illustration of the first Nyquist criterion]]
+
It can be seen that&nbsp; $G_{\rm Per}(f)$&nbsp; is constant.&nbsp; From this it follows that the first Nyquist criterion is fulfilled &nbsp; &rArr; &nbsp; <u>solution 1</u>&nbsp; is correct.
It can be seen that $G_{\rm Per}(f)$ is constant. From this it follows that the first Nyquist criterion is fulfilled. Consequently, <u>solution 1</u> is correct.
 
  
  
 
'''(2)'''&nbsp; Due to the Fourier integrals the following relation holds:
 
'''(2)'''&nbsp; Due to the Fourier integrals the following relation holds:
 
:$$g(t=0) =  \int_{-\infty}^{\infty}G(f) \,{\rm d} f
 
:$$g(t=0) =  \int_{-\infty}^{\infty}G(f) \,{\rm d} f
  = A \cdot ( 2\,{\rm kHz}+6\,{\rm kHz}+2\,{\rm kHz})= A \cdot 10\,{\rm kHz}\hspace{0.3cm}
+
  = A \cdot ( 2\,{\rm kHz}+6\,{\rm kHz}+2\,{\rm kHz})= A \cdot 10\,{\rm kHz}$$
\Rightarrow \hspace{0.3cm}A  = \frac{g(t=0)}{10\,{\rm kHz}}  = \frac{2\,{\rm V}}{10\,{\rm kHz}} \hspace{0.1cm}\underline {= 0.2 \, {\rm mV/Hz}} \hspace{0.05cm}.$$
+
:$$\Rightarrow \hspace{0.3cm}A  = \frac{g(t=0)}{10\,{\rm kHz}}  = \frac{2\,{\rm V}}{10\,{\rm kHz}} \hspace{0.1cm}\underline {= 0.2 \, {\rm mV/Hz}} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Let $g(t) = g_{1}(t) +g_{2}(t)$, where
+
'''(3)'''&nbsp; Let&nbsp; $g(t) = g_{1}(t) +g_{2}(t)$,&nbsp; where
*$g_{1}(t)$ contains the spectral components in the interval $\pm 3 \, \rm kHz$ and
+
*$g_{1}(t)$&nbsp; contains the spectral components in the interval $\pm 3 \, \rm kHz$&nbsp; and
*$g_{2}(t)$ those between $13 \, \rm kHz$ and $15 \, \rm kHz$ (and between  $-13 \, \rm kHz$ and $-15 \, \rm kHz$).  
+
*$g_{2}(t)$&nbsp; those between $13 \, \rm kHz$ and $15 \, \rm kHz$&nbsp; (and between&nbsp; $-13 \, \rm kHz$&nbsp; and&nbsp; $-15 \, \rm kHz$).  
  
  
With the Fourier correspondence given, the two components are:
+
With the Fourier correspondence given,&nbsp; the two components are:
 
:$$g_1(t)  \ = \ A \cdot 6\,{\rm kHz}  \cdot {\rm si}(\pi \cdot 6\,{\rm kHz} \cdot t)
 
:$$g_1(t)  \ = \ A \cdot 6\,{\rm kHz}  \cdot {\rm si}(\pi \cdot 6\,{\rm kHz} \cdot t)
 
   \hspace{0.05cm},$$
 
   \hspace{0.05cm},$$
Line 97: Line 98:
 
\\  {\rm{for}}\hspace{0.15cm}|f| > 1\,{\rm kHz}  \hspace{0.05cm}. \\
 
\\  {\rm{for}}\hspace{0.15cm}|f| > 1\,{\rm kHz}  \hspace{0.05cm}. \\
 
\end{array}$$
 
\end{array}$$
The bottom diagram shows the numerically determined time history $g(t)$. For the time $t = T = 0.1\, \rm ms$ (yellow square) we get:
+
The bottom diagram shows the numerically determined time history&nbsp; $g(t)$.&nbsp; For the time&nbsp; $t = T = 0.1\, \rm ms$&nbsp; (yellow square)&nbsp; we get:
:$$g_2(t = T )  =  2A \cdot 2\,{\rm kHz}  \cdot {\rm si}(0.2 \cdot \pi
+
:$$g_2(t = T )  =  2A \cdot 2\,{\rm kHz}  \cdot {\rm si}(0.2 \cdot \pi)\cdot \cos (2.8 \cdot \pi)   
  )\cdot \cos (2.8 \cdot \pi)   
 
 
       =  \frac{ A \cdot 4\,{\rm kHz}}{0.2 \cdot \pi}\cdot {\rm sin}(0.2 \cdot \pi
 
       =  \frac{ A \cdot 4\,{\rm kHz}}{0.2 \cdot \pi}\cdot {\rm sin}(0.2 \cdot \pi
 
   )\cdot\cos (0.8 \cdot \pi) = \frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot [{\rm sin}(-0.6 \cdot
 
   )\cdot\cos (0.8 \cdot \pi) = \frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot [{\rm sin}(-0.6 \cdot
 
   \pi)+ {\rm sin}(\pi)] $$
 
   \pi)+ {\rm sin}(\pi)] $$
 +
[[File:EN_Dig_A_1_4.png|right|frame|Higher frequency Nyquist pulse]]
 
:$$\Rightarrow \hspace{0.3cm} g_2(t = T )  = -\frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot {\rm sin}(0.6 \cdot
 
:$$\Rightarrow \hspace{0.3cm} g_2(t = T )  = -\frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot {\rm sin}(0.6 \cdot
 
   \pi).$$
 
   \pi).$$
For the first component $g_1(t)$, at time $t = T$:
+
 
:$$g_1(t = T ) =  A \cdot 6\,{\rm kHz}  \cdot {\rm si}(0.6 \cdot \pi
+
For the first component&nbsp; $g_1(t)$,&nbsp; at time&nbsp; $t = T$:
  )= \frac{ A \cdot 6\,{\rm kHz}}{0.6 \cdot \pi}\cdot {\rm sin}(0.6 \cdot \pi
+
:$$g_1(t = T ) =  A \cdot 6\,{\rm kHz}  \cdot {\rm sinc}(0.6  
   )= - g_2(t = T )$$
+
  )$$
:$$\Rightarrow \hspace{0.3cm} g(t = T ) = g_1(t = T ) + g_2(t = T )\hspace{0.1cm}\underline {= 0 } \hspace{0.05cm}.$$
+
:$$\Rightarrow \hspace{0.3cm}g_1(t = T ) = \frac{ A \cdot 6\,{\rm kHz}}{0.6 \cdot \pi}\cdot {\rm sin}(0.6 \cdot \pi
 +
   )$$
 +
:$$\Rightarrow \hspace{0.3cm}g_1(t = T ) = - g_2(t = T )$$
 +
$$\Rightarrow \hspace{0.3cm} g(t = T ) = g_1(t = T ) + g_2(t = T )\hspace{0.1cm}\underline {= 0 } \hspace{0.05cm}.$$
 
This result is not surprising because of the Nyquist property.
 
This result is not surprising because of the Nyquist property.
[[File:EN_Dig_A_1_4.png|center|frame|Higher frequency Nyquist pulse]]
+
<br clear=all>
 
 
 
 
 
'''(4)'''&nbsp; For $t = 2.5 T$ (green square), the following partial results are obtained:
 
'''(4)'''&nbsp; For $t = 2.5 T$ (green square), the following partial results are obtained:
 
:$$g_1(t = 2.5 T ) =  A \cdot 6\,{\rm kHz}  \cdot {\rm si}(1.5 \cdot \pi
 
:$$g_1(t = 2.5 T ) =  A \cdot 6\,{\rm kHz}  \cdot {\rm si}(1.5 \cdot \pi
Line 121: Line 123:
 
   )\cdot \cos (7 \cdot \pi)=- \frac{ A \cdot 8\,{\rm kHz}}{ \pi} $$
 
   )\cdot \cos (7 \cdot \pi)=- \frac{ A \cdot 8\,{\rm kHz}}{ \pi} $$
 
:$$\Rightarrow \hspace{0.3cm} g(t = 2.5  T )  = g_1(t = 2.5  T )  +g_2(t = 2.5  T ) =  - \frac{ A \cdot 12\,{\rm kHz}}{ \pi} \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} g(t = 2.5  T )  = g_1(t = 2.5  T )  +g_2(t = 2.5  T ) =  - \frac{ A \cdot 12\,{\rm kHz}}{ \pi} \hspace{0.05cm}.$$
Considering $g(t = 0) = A \cdot 10 \ \rm kHz$, we get:
+
Considering&nbsp; $g(t = 0) = A \cdot 10 \ \rm kHz$,&nbsp; we get:
 
:$$\frac{g(t = 2.5  T )}{g(t = 0)} =  -\frac{ 1.2}{ \pi} \hspace{0.1cm}\underline {= -0.382 } \hspace{0.05cm}.$$
 
:$$\frac{g(t = 2.5  T )}{g(t = 0)} =  -\frac{ 1.2}{ \pi} \hspace{0.1cm}\underline {= -0.382 } \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; The second Nyquist criterion states that the Nyquist pulse $g(t)$ has zero crossings at $\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$  
+
'''(5)'''&nbsp; The second Nyquist criterion states that the Nyquist pulse&nbsp; $g(t)$&nbsp; has zero crossings at $\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$  
*According to the result from '''(4)''' this condition is not fulfilled here.
+
*According to the result from&nbsp; '''(4)'''&nbsp; this condition is not fulfilled here.
 
*Therefore <u>solution 2</u> is correct.
 
*Therefore <u>solution 2</u> is correct.
  

Revision as of 15:43, 1 May 2022


Rectangular Nyquist spectrum

Given by the sketch is the spectrum  $G(f)$  of the basic detection pulse,  where the parameter  $A$  is still to be determined.  Among other things it is to be checked whether this basic detection pulse fulfills one of the two Nyquist criteria.  These are:

  • The  first Nyquist criterion  is fulfilled if for the spectral function holds:
$$\sum_{k = -\infty}^{+\infty} G(f - {k}/{T} ) = {\rm const.}$$
In this case,  the pulse  $g(t)$  has zero crossings at  $t = ν \cdot T$  for all integer values of  $ν$  except  $ν = 0$.  For the entire exercise,  $T = 0.1 \, \rm ms$  is assumed.
  • If the  second Nyquist criterion  is satisfied,  $g(t)$  has zero crossings at  $\pm 1.5 T$,  $\pm 2.5 T$, etc.



Notes:

  • The two equations are assumed to be known:
$$X(f) = \left\{ \begin{array}{c} A \\ 0 \\\end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\hspace{0.15cm}|f| < f_0 \hspace{0.05cm}, \\ {\rm{for}}\hspace{0.15cm}|f| > f_0 \hspace{0.08cm} \\ \end{array} \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} x(t) =2 \cdot A \cdot f_0 \cdot {\rm si}(2 \pi f_0 T) \hspace{0.05cm},\hspace{0.4cm} {\rm si} (x) = \sin(x)/x\hspace{0.05cm},$$
$$\sin(\alpha) \cdot \cos (\beta) = \frac{1}{2} \cdot \big[ \sin(\alpha - \beta) + \sin(\alpha + \beta)\big] \hspace{0.05cm}.$$


Questions

1

Does the given pulse  $g(t)$  satisfy the first Nyquist criterion?

The first Nyquist criterion is fulfilled.
The first Nyquist criterion is not fulfilled.

2

Determine the parameter  $A$  such that  $g(t = 0) = 2\, \rm V$  holds.

$A \ = \ $

$ \ \rm mV/Hz$

3

Calculate  $g(t)$  from  $G(f)$  by applying the inverse Fourier transform.  What  (normalized)  function value is obtained at  $t = T$?

$ g(t = T)/g(t = 0) \ = \ $

4

Which  (normalized)  value results for  $t = 2.5T$?

$g(t = 2.5 T)/g(t = 0)\ = \ $

5

Does the pulse  $g(t)$  satisfy the second Nyquist criterion?

The second Nyquist criterion is fulfilled.
The second Nyquist criterion is not fulfilled.


Solution

(1)  The following diagram shows the spectrum  (the index  "Per"  here stands for  "Periodic Continuation"):

Illustration of the first Nyquist criterion
$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} G(f - \frac{k}{T} ) \hspace{0.05cm}.$$
  • The indexing variable  $k = 0$  indicates the original spectral function  $G(f)$.  This is filled in gray.
  • The spectrum shifted to the right by the value  $1/T = 10\, \rm kHz$  belongs to  $k = 1$  and is marked in green,  while  $k = -1$  leads to the function highlighted in yellow.
  • The red and blue areas mark the contributions of the indexing variables  $k = 2$  and  $k = - 2$.


It can be seen that  $G_{\rm Per}(f)$  is constant.  From this it follows that the first Nyquist criterion is fulfilled   ⇒   solution 1  is correct.


(2)  Due to the Fourier integrals the following relation holds:

$$g(t=0) = \int_{-\infty}^{\infty}G(f) \,{\rm d} f = A \cdot ( 2\,{\rm kHz}+6\,{\rm kHz}+2\,{\rm kHz})= A \cdot 10\,{\rm kHz}$$
$$\Rightarrow \hspace{0.3cm}A = \frac{g(t=0)}{10\,{\rm kHz}} = \frac{2\,{\rm V}}{10\,{\rm kHz}} \hspace{0.1cm}\underline {= 0.2 \, {\rm mV/Hz}} \hspace{0.05cm}.$$


(3)  Let  $g(t) = g_{1}(t) +g_{2}(t)$,  where

  • $g_{1}(t)$  contains the spectral components in the interval $\pm 3 \, \rm kHz$  and
  • $g_{2}(t)$  those between $13 \, \rm kHz$ and $15 \, \rm kHz$  (and between  $-13 \, \rm kHz$  and  $-15 \, \rm kHz$).


With the Fourier correspondence given,  the two components are:

$$g_1(t) \ = \ A \cdot 6\,{\rm kHz} \cdot {\rm si}(\pi \cdot 6\,{\rm kHz} \cdot t) \hspace{0.05cm},$$
$$g_2(t) \ = \ A \cdot 2\,{\rm kHz} \cdot{\rm si}(\pi \cdot 2\,{\rm kHz} \cdot t) \cdot 2 \cdot {\rm cos}(2 \pi \cdot 14\,{\rm kHz} \cdot t) \hspace{0.05cm}.$$

The second equation follows from the relation:

$$G_2(f) = \left[ \delta(f + 14\,{\rm kHz}) + \delta(f - 14\,{\rm kHz})\right] \star \left\{ \begin{array}{c} A \\ 0 \\\end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\hspace{0.15cm}|f| < 1\,{\rm kHz} \hspace{0.05cm}, \\ {\rm{for}}\hspace{0.15cm}|f| > 1\,{\rm kHz} \hspace{0.05cm}. \\ \end{array}$$

The bottom diagram shows the numerically determined time history  $g(t)$.  For the time  $t = T = 0.1\, \rm ms$  (yellow square)  we get:

$$g_2(t = T ) = 2A \cdot 2\,{\rm kHz} \cdot {\rm si}(0.2 \cdot \pi)\cdot \cos (2.8 \cdot \pi) = \frac{ A \cdot 4\,{\rm kHz}}{0.2 \cdot \pi}\cdot {\rm sin}(0.2 \cdot \pi )\cdot\cos (0.8 \cdot \pi) = \frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot [{\rm sin}(-0.6 \cdot \pi)+ {\rm sin}(\pi)] $$
Higher frequency Nyquist pulse
$$\Rightarrow \hspace{0.3cm} g_2(t = T ) = -\frac{ A \cdot 10\,{\rm kHz}}{ \pi}\cdot {\rm sin}(0.6 \cdot \pi).$$

For the first component  $g_1(t)$,  at time  $t = T$:

$$g_1(t = T ) = A \cdot 6\,{\rm kHz} \cdot {\rm sinc}(0.6 )$$
$$\Rightarrow \hspace{0.3cm}g_1(t = T ) = \frac{ A \cdot 6\,{\rm kHz}}{0.6 \cdot \pi}\cdot {\rm sin}(0.6 \cdot \pi )$$
$$\Rightarrow \hspace{0.3cm}g_1(t = T ) = - g_2(t = T )$$

$$\Rightarrow \hspace{0.3cm} g(t = T ) = g_1(t = T ) + g_2(t = T )\hspace{0.1cm}\underline {= 0 } \hspace{0.05cm}.$$ This result is not surprising because of the Nyquist property.
(4)  For $t = 2.5 T$ (green square), the following partial results are obtained:

$$g_1(t = 2.5 T ) = A \cdot 6\,{\rm kHz} \cdot {\rm si}(1.5 \cdot \pi )= \frac{ A \cdot 6\,{\rm kHz}}{1.5 \cdot \pi}\cdot {\rm sin}(1.5 \cdot \pi )= - \frac{ A \cdot 4\,{\rm kHz}}{ \pi}\hspace{0.05cm},$$
$$g_2(t = 2.5 T ) = 2A \cdot 2\,{\rm kHz} \cdot {\rm si}(0.5 \cdot \pi )\cdot \cos (7 \cdot \pi)=- \frac{ A \cdot 8\,{\rm kHz}}{ \pi} $$
$$\Rightarrow \hspace{0.3cm} g(t = 2.5 T ) = g_1(t = 2.5 T ) +g_2(t = 2.5 T ) = - \frac{ A \cdot 12\,{\rm kHz}}{ \pi} \hspace{0.05cm}.$$

Considering  $g(t = 0) = A \cdot 10 \ \rm kHz$,  we get:

$$\frac{g(t = 2.5 T )}{g(t = 0)} = -\frac{ 1.2}{ \pi} \hspace{0.1cm}\underline {= -0.382 } \hspace{0.05cm}.$$


(5)  The second Nyquist criterion states that the Nyquist pulse  $g(t)$  has zero crossings at $\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$

  • According to the result from  (4)  this condition is not fulfilled here.
  • Therefore solution 2 is correct.