Difference between revisions of "Aufgaben:Exercise 1.5: Cosine-Square Spectrum"

From LNTwww
Line 49: Line 49:
 
+ $g(t)$  satisfies the first Nyquist criterion because of the  $\rm sinc$–term.
 
+ $g(t)$  satisfies the first Nyquist criterion because of the  $\rm sinc$–term.
 
- $g(t)$  has further zero crossings at  $\pm 0.5T,  \pm 1.5T,  \pm 2.5 T, \text{...}$
 
- $g(t)$  has further zero crossings at  $\pm 0.5T,  \pm 1.5T,  \pm 2.5 T, \text{...}$
+ The  $\cos^{2}$ spectrum also satisfies the second Nyquist criterion.
+
+ The  $\cos^{2}$–spectrum also satisfies the second Nyquist criterion.
  
  
Line 62: Line 62:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  The upper corner frequency can be read from the diagram:   $f_{2} \underline{= 2 \ \rm MHz}$. Since the spectrum is not constant in any range, $f_{1} \underline {= 0}$.
+
'''(1)'''  The upper corner frequency can be read from the diagram:   $f_{2} \underline{= 2 \ \rm MHz}$.  Since the spectrum is not constant in any range, $f_{1} \underline {= 0}$.
  
  
Line 75: Line 75:
  
  
'''(4)'''&nbsp; <u>Statements 1 and 3</u> are correct:
+
'''(4)'''&nbsp; <u>Statements 1 and 3</u>&nbsp; are correct:
*The first statement is correct: &nbsp; The function $si(π · t/T)$ leads to zero crossings at $\nu T (\nu \neq 0)$.  
+
*The first statement is correct: &nbsp; The function&nbsp; ${\rm sinc}(t/T)$&nbsp; leads to zero crossings at&nbsp; $\nu T (\nu \neq 0)$.  
*The last statement is also true: &nbsp;Because of $g(t) = 0$ for $t =\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$ the second Nyquist criterion is also fulfilled.
+
*The last statement is also true: &nbsp;Because of&nbsp; $g(t) = 0$&nbsp; for&nbsp; $t =\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$&nbsp; the second Nyquist criterion is also fulfilled.
*On the other hand, the middle statement is false, since $g(t = T/2) \neq 0$.  
+
*On the other hand,&nbsp; the middle statement is false,&nbsp; since $g(t = T/2) \neq 0$.  
 
 
 
*The condition for the second Nyquist criterion is in the frequency domain:
 
*The condition for the second Nyquist criterion is in the frequency domain:
 
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} \frac {G \left ( f -
 
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} \frac {G \left ( f -
\frac{k}{T} \right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}=
+
{k}/{T} \right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}=
 
{\rm const.}$$
 
{\rm const.}$$
*The condition is indeed fulfilled for the cos$^{2}$ spectrum, as can be shown after a longer calculation. We restrict ourselves here to the frequency range $| f · T | \leq 1$ and set $g_{0} \cdot  T = 1$ for simplicity:
+
*The condition is indeed fulfilled for the&nbsp; cos$^{2}$&ndash;spectrum,&nbsp; as can be shown after a longer calculation.  
 +
*We restrict ourselves here to the frequency range&nbsp; $| f · T | \leq 1$&nbsp; and set&nbsp; $g_{0} \cdot  T = 1$&nbsp; for simplicity:
 
:$$G_{\rm Per}(f) =  \frac {\cos^2 \left [\pi/2 \cdot  ( f_{\rm Nyq}
 
:$$G_{\rm Per}(f) =  \frac {\cos^2 \left [\pi/2 \cdot  ( f_{\rm Nyq}
 
- f) \cdot T \right ]}{\cos \left [\pi \cdot  ( f_{\rm Nyq} - f)
 
- f) \cdot T \right ]}{\cos \left [\pi \cdot  ( f_{\rm Nyq} - f)
Line 98: Line 98:
 
- f) \cdot T \right ]} +1- \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq}
 
- f) \cdot T \right ]} +1- \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq}
 
+ f) \cdot T \right ]}\right ]\hspace{0.05cm}.$$
 
+ f) \cdot T \right ]}\right ]\hspace{0.05cm}.$$
* Because of $\cos \left [ \pi \cdot ( f_{\rm Nyq} \pm f) \cdot T \right] = \cos
+
* Because of&nbsp; $\cos \left [ \pi \cdot ( f_{\rm Nyq} \pm f) \cdot T \right] = \cos
 
\left (  {\pi}/{2} \pm \pi  f  T \right) =  \sin \left ( \pm
 
\left (  {\pi}/{2} \pm \pi  f  T \right) =  \sin \left ( \pm
 
\pi  f  T \right)\text{:}$
 
\pi  f  T \right)\text{:}$
Line 105: Line 105:
  
  
'''(5)'''&nbsp; For $t = T/2$, the given equation yields an indeterminate value (0 divided by 0), which can be determined using l'Hospital's rule.
+
'''(5)'''&nbsp; For&nbsp; $t = T/2$,&nbsp; the given equation yields an indeterminate value&nbsp; ("0 divided by 0"),&nbsp; which can be determined using l'Hospital's rule.
*To do this, form the derivatives of the numerator and denominator and insert the desired time $t = T/2$ into the result:
+
*To do this,&nbsp; form the derivatives of the numerator and denominator and insert the desired time&nbsp; $t = T/2$&nbsp; into the result:
  
:$$\frac{g( t = T/2)}{g_0}  = \ {{\rm si}(\pi \cdot \frac{t}{T})
+
:$$\frac{g( t = T/2)}{g_0}  = \ {{\rm sinc}( \frac{t}{T})
 
\cdot \frac{{\rm d}/{\rm d}t \left [ \cos(\pi \cdot
 
\cdot \frac{{\rm d}/{\rm d}t \left [ \cos(\pi \cdot
 
t/T)\right]}{{\rm d}/{\rm d}t\left [ 1 - (2 \cdot t/T)^2\right]}}
 
t/T)\right]}{{\rm d}/{\rm d}t\left [ 1 - (2 \cdot t/T)^2\right]}}
\bigg |_{t = T/2}  = \ {{\rm si}(\pi \cdot \frac{t}{T}) \cdot \frac{- \pi/T \cdot
+
\bigg |_{t = T/2}  = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{- \pi/T \cdot
 
  \sin(\pi \cdot t/T)}{-2 \cdot (2\cdot t/T) \cdot (2/T)}} \bigg |_{t = T/2} = \frac {2}{\pi}\cdot
 
  \sin(\pi \cdot t/T)}{-2 \cdot (2\cdot t/T) \cdot (2/T)}} \bigg |_{t = T/2} = \frac {2}{\pi}\cdot
 
\frac {\pi}{4}\hspace{0.1cm}\underline { = 0.5}\hspace{0.05cm}.$$
 
\frac {\pi}{4}\hspace{0.1cm}\underline { = 0.5}\hspace{0.05cm}.$$
Line 131: Line 131:
 
\cdot t/T)(1- 2 \cdot t/T)}= \frac{\cos(\pi \cdot t/T)}{1 - (2
 
\cdot t/T)(1- 2 \cdot t/T)}= \frac{\cos(\pi \cdot t/T)}{1 - (2
 
\cdot t/T)^2}\hspace{0.05cm}.$$
 
\cdot t/T)^2}\hspace{0.05cm}.$$
*It follows that both expressions are actually equal. Thus, for time $t = T/2$, the following is still true:
+
*It follows that both expressions are actually equal.&nbsp; Thus,&nbsp; for time&nbsp; $t = T/2$,&nbsp; the following is still true:
 
:$$\frac{g( t = T/2)}{g_0}  = {\rm si}(  \frac{\pi}{2}) \cdot \frac
 
:$$\frac{g( t = T/2)}{g_0}  = {\rm si}(  \frac{\pi}{2}) \cdot \frac
 
{\pi}{4} \cdot \left [ {\rm si}(\pi ) + {\rm si}(0)\right]= \frac
 
{\pi}{4} \cdot \left [ {\rm si}(\pi ) + {\rm si}(0)\right]= \frac

Revision as of 11:51, 2 May 2022


Cosine-square Nyquist spectrum

The spectrum  $G(f)$  with  $\cos^{2}$–shaped course is considered according to the sketch.  This satisfies the first Nyquist criterion:

$$\sum_{k = -\infty}^{+\infty} G(f -{k}/{T} ) = {\rm const.}$$

Accordingly,  the associated pulse  $g(t)$  has zero crossings at multiples of  $T$,  where  $T$  remains to be determined.  The inverse Fourier transform of  $G(f)$  yields the equation for the time course:

$$g( t )= g_0 \cdot \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot t/T)^2}\cdot {\rm sinc}( {t}/{T})\hspace{0.05cm}.$$

The questions for this exercise refer to the following properties:

  • The spectral function  $G(f)$  is a special case of the cosine rolloff spectrum,  which is point symmetric about the Nyquist frequency  $f_{\rm Nyq}$. 
  • The cosine rolloff spectrum is completely characterized by the corner frequencies  $f_{1}$  and  $f_{2}$. 
  • For  $| f | < f_{1}$,   $G(f) = g_{0} \cdot T = \rm const.$,  while the spectrum for  $| f | > f_{2}$  has no components. 
  • The relation between the Nyquist frequency and the corner frequencies is:
$$f_{\rm Nyq}= \frac{f_1 +f_2 } {2 }\hspace{0.05cm}.$$
  • The edge steepness is characterized by the so-called rolloff factor:
$$r = \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.2cm}(0 \le r \le 1) \hspace{0.05cm}.$$


Note:  The exercise belongs to the chapter  "Properties of Nyquist Systems".


Questions

1

What are the corner frequencies of this cosine rolloff spectrum?

$f_{1} \ = \ $

$\ \rm MHz$
$f_{2} \ = \ $

$\ \rm MHz$

2

What are the Nyquist frequency and the rolloff factor?

$f_{\rm Nyq} \ = \ $

$\ \rm MHz$
$r \ = \ $

3

At what time interval  $T$  does  $g(t)$  have zero crossings?

$T \ = \ $

$\ \rm µ s$

4

Which of the following statements is true?

$g(t)$  satisfies the first Nyquist criterion because of the  $\rm sinc$–term.
$g(t)$  has further zero crossings at  $\pm 0.5T,  \pm 1.5T,  \pm 2.5 T, \text{...}$
The  $\cos^{2}$–spectrum also satisfies the second Nyquist criterion.

5

What is the  (normalized)  value of the pulse at time  $t = T/2$?

$g(t = T/2)/g_{0} \ = \ $


Solution

(1)  The upper corner frequency can be read from the diagram:   $f_{2} \underline{= 2 \ \rm MHz}$.  Since the spectrum is not constant in any range, $f_{1} \underline {= 0}$.


(2)  From the given equations we obtain:

$$f_{\rm Nyq} = \ \frac{f_1 +f_2 } {2 }\hspace{0.1cm}\underline { = 1\,{\rm MHz}}\hspace{0.05cm},\hspace{0.5cm} r = \ \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.1cm}\underline { = 1 }\hspace{0.05cm}.$$


(3)  The spacing of equidistant zero crossings is directly related to the Nyquist frequency:

$$f_{\rm Nyq}= \frac{1}{2T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T= \frac{1}{2f_{\rm Nyq}}\hspace{0.1cm}\underline { = 0.5\,{\rm µ s}}\hspace{0.05cm}.$$


(4)  Statements 1 and 3  are correct:

  • The first statement is correct:   The function  ${\rm sinc}(t/T)$  leads to zero crossings at  $\nu T (\nu \neq 0)$.
  • The last statement is also true:  Because of  $g(t) = 0$  for  $t =\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$  the second Nyquist criterion is also fulfilled.
  • On the other hand,  the middle statement is false,  since $g(t = T/2) \neq 0$.
  • The condition for the second Nyquist criterion is in the frequency domain:
$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} \frac {G \left ( f - {k}/{T} \right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}= {\rm const.}$$
  • The condition is indeed fulfilled for the  cos$^{2}$–spectrum,  as can be shown after a longer calculation.
  • We restrict ourselves here to the frequency range  $| f · T | \leq 1$  and set  $g_{0} \cdot T = 1$  for simplicity:
$$G_{\rm Per}(f) = \frac {\cos^2 \left [\pi/2 \cdot ( f_{\rm Nyq} - f) \cdot T \right ]}{\cos \left [\pi \cdot ( f_{\rm Nyq} - f) \cdot T \right ]}+\frac {\cos^2 \left [\pi/2 \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}{\cos \left [\pi \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}\hspace{0.05cm}.$$
  • Further holds:
$$\frac {\cos^2 (x)}{\cos(2x)} = {1}/{2} \cdot \frac {1+\cos(2x)}{\cos(2x)}= {1}/{2} \cdot \left [1+ \frac {1}{\cos(2x)}\right ]$$
$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) = {1}/{2} \cdot \left [1+ \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq} - f) \cdot T \right ]} +1- \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}\right ]\hspace{0.05cm}.$$
  • Because of  $\cos \left [ \pi \cdot ( f_{\rm Nyq} \pm f) \cdot T \right] = \cos \left ( {\pi}/{2} \pm \pi f T \right) = \sin \left ( \pm \pi f T \right)\text{:}$
$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) = 2 - \frac {1}{\sin (\pi f T)} + \frac {1}{\sin (\pi f T)} = 2 = {\rm const}\hspace{0.05cm}.$$


(5)  For  $t = T/2$,  the given equation yields an indeterminate value  ("0 divided by 0"),  which can be determined using l'Hospital's rule.

  • To do this,  form the derivatives of the numerator and denominator and insert the desired time  $t = T/2$  into the result:
$$\frac{g( t = T/2)}{g_0} = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{{\rm d}/{\rm d}t \left [ \cos(\pi \cdot t/T)\right]}{{\rm d}/{\rm d}t\left [ 1 - (2 \cdot t/T)^2\right]}} \bigg |_{t = T/2} = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{- \pi/T \cdot \sin(\pi \cdot t/T)}{-2 \cdot (2\cdot t/T) \cdot (2/T)}} \bigg |_{t = T/2} = \frac {2}{\pi}\cdot \frac {\pi}{4}\hspace{0.1cm}\underline { = 0.5}\hspace{0.05cm}.$$
  • A second solution method leads to the expression:
$$\frac{g( t )}{g_0} = {\rm si}(\pi \cdot \frac{t}{T}) \cdot \frac {\pi}{4} \cdot \big [ {\rm si}(\pi \cdot (t/T + 1/2)) + {\rm si}(\pi \cdot (t/T - 1/2))\big] \hspace{0.05cm}.$$
  • The second bracket expression can be transformed as follows:
$$\frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm} \bigg ] = \ \frac {\pi}{4} \cdot \left [ \frac {{\rm sin}(\pi \cdot t/T + \pi/2)}{\pi \cdot t/T + \pi/2} + \frac {{\rm sin}(\pi \cdot t/T - \pi/2)}{\pi \cdot t/T - \pi/2}\right] = \ \frac {1}{2} \cdot {\rm cos}(\pi \cdot t/T )\cdot \left [ \frac {1}{2 \cdot t/T + 1} - \frac {1}{ 2 \cdot t/T - 1}\right] $$
$$\Rightarrow \hspace{0.3cm} \frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm} \bigg ] = \ \frac {1}{2} \cdot {\rm cos}(\pi \cdot t/T )\cdot \frac{1- 2 \cdot t/T + 1+ 2 \cdot t/T}{(1+ 2 \cdot t/T)(1- 2 \cdot t/T)}= \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot t/T)^2}\hspace{0.05cm}.$$
  • It follows that both expressions are actually equal.  Thus,  for time  $t = T/2$,  the following is still true:
$$\frac{g( t = T/2)}{g_0} = {\rm si}( \frac{\pi}{2}) \cdot \frac {\pi}{4} \cdot \left [ {\rm si}(\pi ) + {\rm si}(0)\right]= \frac {2}{\pi}\cdot \frac {\pi}{4} = 0.5 \hspace{0.05cm}.$$