Difference between revisions of "Aufgaben:Exercise 3.11: Viterbi Receiver and Trellis Diagram"

From LNTwww
Line 33: Line 33:
 
- The noise power is only affected by  $H_{\rm MF}(f)$, not by  $H_{\rm DF}(f)$.   
 
- The noise power is only affected by  $H_{\rm MF}(f)$, not by  $H_{\rm DF}(f)$.   
  
{Zu welchen Zeiten  $\nu$  kann man das aktuelle Symbol  $a_{\rm \nu}$  endgültig entscheiden?
+
{At what times  $\nu$  can we finally decide the current symbol  $a_{\rm \nu}$?   
 
|type="[]"}
 
|type="[]"}
 
+ $\nu = 1,$
 
+ $\nu = 1,$
Line 41: Line 41:
 
+ $\nu = 5.$
 
+ $\nu = 5.$
  
{Wie lautet die vom Viterbi–Empfänger entschiedene Folge?
+
{What is the sequence decided by the Viterbi receiver?
 
|type="{}"}
 
|type="{}"}
 
$a_1 \ = \ $ { 0. }
 
$a_1 \ = \ $ { 0. }
Line 49: Line 49:
 
$a_5 \ = \ $ { 0. }
 
$a_5 \ = \ $ { 0. }
  
{Welche der folgenden Aussagen  sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Es ist sicher, dass die erkannte Folge auch gesendet wurde.
+
- It is certain that the detected sequence was also sent.
+ Ein MAP–Empfänger hätte die gleiche Fehlerwahrscheinlichkeit.
+
+ A MAP receiver would have the same error probability.
- Schwellenwertentscheidung ist gleich gut wie dieser Maximum–Likelihood–Empfänger.
+
- Threshold decision is the same as this maximum likelihood receiver.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>beiden ersten Lösungsvorschläge</u>:  
+
'''(1)'''&nbsp; The <u>first two solutions</u> are correct:  
*Das Signal $m(t)$ nach dem Matched&ndash;Filter $H_{\rm MF}(f)$ weist das größtmögliche Signal&ndash;zu&ndash;Störleistungsverhältnis auf.
+
*The signal $m(t)$ after the matched filter $H_{\rm MF}(f)$ has the largest possible signal-to-interference power ratio.
* Die Störanteile der Folge $&#9001;m_{\rm \nu}&#9002;$ sind aber aufgrund der spektralen Formung (stark) korreliert.  
+
* However, the noise components of the sequence $&#9001;m_{\rm \nu}&#9002;$ are (strongly) correlated due to the spectral shaping.
*Aufgabe des zeitdiskreten Dekorrelationsfilters mit dem Frequenzgang $H_{\rm DF}(f)$ ist es, diese Bindungen aufzulösen, weshalb für $H_{\rm DF}(f)$ auch der Name "Whitening&ndash;Filter" verwendet wird.  
+
*The task of the discrete-time decorrelation filter with the frequency response $H_{\rm DF}(f)$ is to dissolve these bonds, which is why the name "whitening filter" is also used for $H_{\rm DF}(f)$.
*Dies ist allerdings nur auf Kosten einer erhöhten Störleistung möglich &nbsp; &#8658; &nbsp; der letzte Lösungsvorschlag trifft demnach nicht zu.
+
*However, this is possible only at the cost of increased noise power &nbsp; &#8658; &nbsp; consequently, the last proposed solution does not apply.
  
  
  
'''(2)'''&nbsp; Die beiden bei $\underline {\nu = 1}$ ankommenden Pfeile sind jeweils blau gezeichnet und kennzeichnen das Symbol $a_1 = 0$. Somit ist bereits zu diesem Zeitpunkt das Ausgangssymbol $a_1$ festgelegt. Ebenso stehen die Symbole $a_3 = 1$ und $a_5 = 0$ bereits zu den Zeitpunkten $\underline {\nu = 3}$ bzw. $\underline {\nu = 5}$ fest.
+
'''(2)'''&nbsp; The two arrows arriving at $\underline {\nu = 1}$ are each drawn in blue and indicate the symbol $a_1 = 0$. Thus, the initial symbol $a_1$ is already fixed at this point. Similarly, the symbols $a_3 = 1$ and $a_5 = 0$ are already fixed at the timesn $\underline {\nu = 3}$ and $\underline {\nu = 5}$, respectively.
  
Dagegen ist zum Zeitpunkt $\nu = 2$ eine Entscheidung bezüglich des Symbols $a_2$ nicht möglich.  
+
In contrast, at time $\nu = 2$, a decision regarding symbol $a_2$ is not possible.
*Unter der Hypothese, dass das nachfolgende Symbol $a_3 = 0$ sein wird, würde sich Symbol $a_2 = 1$ ergeben (bei "$0$" kommt ein roter Pfad an, also von "$1$" kommend).  
+
*Under the hypothesis that the following symbol $a_3 = 0$ would result in symbol $a_2 = 1$ (at "$0$" a red path arrives, thus coming from "$1$").  
* Dagegen führt die Hypothese $a_3 = 1$ zum Ergebnis $a_2 = 0$ (der bei "$1$" ankommende Pfad ist blau).
+
* In contrast, the hypothesis $a_3 = 1$ leads to the result $a_2 = 0$ (the path arriving at "$1$" is blue).
  
  
Ähnlich verhält es sich zum Zeitpunkt $\nu = 4$.
+
The situation is similar at time $\nu = 4$.
  
  
'''(3)'''&nbsp; Aus den durchgehenden Pfaden bei $\nu = 5$ ist ersichtlich:
+
'''(3)'''&nbsp; From the continuous paths at $\nu = 5$ it can be seen:
 
:$$a_{1}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm}
 
:$$a_{1}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm}
 
a_{2}\hspace{0.15cm}\underline { =0} \hspace{0.05cm},\hspace{0.2cm}a_{3}\hspace{0.15cm}\underline {=1}
 
a_{2}\hspace{0.15cm}\underline { =0} \hspace{0.05cm},\hspace{0.2cm}a_{3}\hspace{0.15cm}\underline {=1}
Line 83: Line 83:
  
  
'''(4)'''&nbsp; Richtig ist nur die <u>zweite Aussage</u>:  
+
'''(4)'''&nbsp; Only the <u>second statement</u> is correct:  
*Da die Quellensymbole "$0$" und "$1$" als gleichwahrscheinlich vorausgesetzt wurden, ist der ML&ndash;Empfänger (Viterbi) identisch mit dem MAP&ndash;Empfänger.  
+
*Since the source symbols "$0$" and "$1$" were assumed to be equally probable, the ML receiver (Viterbi) is identical to the MAP receiver.
*Ein Schwellenwertentscheider (der zu jedem Takt eine symbolweise Entscheidung trifft) hat nur dann die gleiche Fehlerwahrscheinlichkeit wie der Viterbi&ndash;Empfänger, wenn es keine Impulsinterferenzen gibt.  
+
*A threshold decision (which makes a symbol-by-symbol decision at each clock) has the same error probability as the Viterbi receiver only if there is no intersymbol interference.
*Dies ist hier offensichtlich nicht der Fall, sonst müsste zu jedem Zeitpunkt $\nu$ eine endgültige Entscheidung getroffen werden können.  
+
*This is obviously not the case here, otherwise it should be possible to make a final decision at every time $\nu$.  
*Die erste Aussage trifft ebenfalls nicht zu. Das würde nämlich bedeuten, dass der Viterbi&ndash;Empfänger bei Vorhandensein von statistischem Rauschen die Fehlerwahrscheinlichkeit $0$ haben kann. Dies ist aus informationstheoretischen Gründen nicht möglich.
+
*The first statement is also not true. Indeed, this would mean that the Viterbi receiver can have error probability $0$ in the presence of statistical noise. This is not possible for information-theoretic reasons.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 09:47, 8 June 2022

Trellis diagram for a precursor

The Viterbi receiver allows a low-effort realization of the maximum likelihood decision rule. It contains the system components listed below:

  • a matched filter adapted to the basic transmission pulse with frequency response  $H_{\rm MF}(f)$  and output signal   $m(t)$,
  • a sampler spaced at the symbol duration (bit duration)  $T$, which converts the continuous-time signal   $m(t)$  into the discrete-time sequence   $〈m_{\rm \nu}〉$, 
  • a decorrelation filter with frequency response   $H_{\rm DF}(f)$  for removing statistical ties between the noise components of the sequence   $〈d_{\rm \nu}〉$,
  • the Viterbi decision, which uses a trellis-based algorithm to obtain the sink symbol sequence  $〈v_{\rm \nu}〉$. 


The graph shows the simplified trellis diagram of the two states "$0$" and "$1$" for time points   $\nu ≤ 5$. This diagram is obtained as a result of evaluating the two minimum total error quantities   ${\it \Gamma}_{\rm \nu}(0)$  and  ${\it \Gamma}_{\rm \nu}(1)$  corresponding to   "Exercise 3.11Z".




Notes:

  • All quantities here are to be understood normalized. Also assume unipolar and equal probability amplitude coefficients:  ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$
  • The topic is also covered in the interactive applet  "Properties of the Viterbi Receiver".


Questions

1

Which of the following statements are true?

The matched filter  $H_{\rm MF}(f)$  is mainly used for noise power limitation.
The decorrelation filter removes ties between samples.
The noise power is only affected by  $H_{\rm MF}(f)$, not by  $H_{\rm DF}(f)$. 

2

At what times  $\nu$  can we finally decide the current symbol  $a_{\rm \nu}$? 

$\nu = 1,$
$\nu = 2,$
$\nu = 3,$
$\nu = 4,$
$\nu = 5.$

3

What is the sequence decided by the Viterbi receiver?

$a_1 \ = \ $

$a_2 \ = \ $

$a_3 \ = \ $

$a_4 \ = \ $

$a_5 \ = \ $

4

Which of the following statements are true?

It is certain that the detected sequence was also sent.
A MAP receiver would have the same error probability.
Threshold decision is the same as this maximum likelihood receiver.


Solution

(1)  The first two solutions are correct:

  • The signal $m(t)$ after the matched filter $H_{\rm MF}(f)$ has the largest possible signal-to-interference power ratio.
  • However, the noise components of the sequence $〈m_{\rm \nu}〉$ are (strongly) correlated due to the spectral shaping.
  • The task of the discrete-time decorrelation filter with the frequency response $H_{\rm DF}(f)$ is to dissolve these bonds, which is why the name "whitening filter" is also used for $H_{\rm DF}(f)$.
  • However, this is possible only at the cost of increased noise power   ⇒   consequently, the last proposed solution does not apply.


(2)  The two arrows arriving at $\underline {\nu = 1}$ are each drawn in blue and indicate the symbol $a_1 = 0$. Thus, the initial symbol $a_1$ is already fixed at this point. Similarly, the symbols $a_3 = 1$ and $a_5 = 0$ are already fixed at the timesn $\underline {\nu = 3}$ and $\underline {\nu = 5}$, respectively.

In contrast, at time $\nu = 2$, a decision regarding symbol $a_2$ is not possible.

  • Under the hypothesis that the following symbol $a_3 = 0$ would result in symbol $a_2 = 1$ (at "$0$" a red path arrives, thus coming from "$1$").
  • In contrast, the hypothesis $a_3 = 1$ leads to the result $a_2 = 0$ (the path arriving at "$1$" is blue).


The situation is similar at time $\nu = 4$.


(3)  From the continuous paths at $\nu = 5$ it can be seen:

$$a_{1}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm} a_{2}\hspace{0.15cm}\underline { =0} \hspace{0.05cm},\hspace{0.2cm}a_{3}\hspace{0.15cm}\underline {=1} \hspace{0.05cm},\hspace{0.2cm} a_{4}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm} a_{5}\hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$


(4)  Only the second statement is correct:

  • Since the source symbols "$0$" and "$1$" were assumed to be equally probable, the ML receiver (Viterbi) is identical to the MAP receiver.
  • A threshold decision (which makes a symbol-by-symbol decision at each clock) has the same error probability as the Viterbi receiver only if there is no intersymbol interference.
  • This is obviously not the case here, otherwise it should be possible to make a final decision at every time $\nu$.
  • The first statement is also not true. Indeed, this would mean that the Viterbi receiver can have error probability $0$ in the presence of statistical noise. This is not possible for information-theoretic reasons.