Difference between revisions of "Aufgaben:Exercise 4.06: Optimal Decision Boundaries"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}}
  
[[File:P_ID2015__Dig_A_4_6.png|right|frame|Signalraumkonstellation mit<br> $N = 2, \ M = 2$]]
+
[[File:P_ID2015__Dig_A_4_6.png|right|frame|Signal space constellation with<br> $N = 2, \ M = 2$]]
Wie betrachten ein binäres Nachrichtensystem &nbsp;$(M = 2)$, das durch die gezeichnete 2D&ndash;Signalraumkonstellation  &nbsp;$(N = 2)$&nbsp; festliegt. Für die beiden möglichen Sendevektoren, die mit den Nachrichten&nbsp; $m_0$&nbsp; und&nbsp; $m_1$&nbsp; direkt gekoppelt sind, gilt:
+
We consider a binary message system &nbsp;$(M = 2)$ that is defined by the drawn 2D signal space constellation &nbsp;$(N = 2)$.&nbsp; The following applies to the two possible transmitted vectors that are directly coupled to the messages&nbsp; $m_0$&nbsp; and&nbsp; $m_1$:&nbsp;  
 
:$$\boldsymbol{ s }_0 \hspace{-0.1cm} \ =\ \hspace{-0.1cm}  \sqrt {E} \cdot (1,\hspace{0.1cm} 5) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_0  \hspace{0.05cm},$$
 
:$$\boldsymbol{ s }_0 \hspace{-0.1cm} \ =\ \hspace{-0.1cm}  \sqrt {E} \cdot (1,\hspace{0.1cm} 5) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_0  \hspace{0.05cm},$$
 
:$$ \boldsymbol{ s }_1 \hspace{-0.1cm} \ =\ \hspace{-0.1cm}  \sqrt {E} \cdot (4, \hspace{0.1cm}1) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_1  \hspace{0.05cm}.$$
 
:$$ \boldsymbol{ s }_1 \hspace{-0.1cm} \ =\ \hspace{-0.1cm}  \sqrt {E} \cdot (4, \hspace{0.1cm}1) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_1  \hspace{0.05cm}.$$
  
Gesucht ist jeweils die optimale Entscheidungsgrenze zwischen den Regionen&nbsp; $I_0 &#8660; m_0$&nbsp; und&nbsp; $I_1 &#8660; m_1$, wobei von folgenden Voraussetzungen ausgegangen wird:
+
The optimal decision boundary between the regions&nbsp; $I_0 &#8660; m_0$&nbsp; and&nbsp; $I_1 &#8660; m_1$ is sought, whereby the following assumptions are made:
* Für die Teilaufgaben '''(1)''' bis '''(3)''' gilt
+
* The following applies to subtasks '''(1)''' to '''(3)'''
 
:$${\rm Pr}(m_0 ) = {\rm Pr}(m_1 ) = 0.5
 
:$${\rm Pr}(m_0 ) = {\rm Pr}(m_1 ) = 0.5
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
* Für die Teilaufgaben '''(4)''' und '''(5)''' soll dagegen gelten:
+
* For subtasks '''(4)''' and '''(5)''', on the other hand, the following should apply:
 
:$${\rm Pr}(m_0 ) = 0.817 \hspace{0.05cm},\hspace{0.2cm} {\rm Pr}(m_1 ) = 0.183\hspace{0.3cm}
 
:$${\rm Pr}(m_0 ) = 0.817 \hspace{0.05cm},\hspace{0.2cm} {\rm Pr}(m_1 ) = 0.183\hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
  \Rightarrow \hspace{0.3cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
Line 17: Line 17:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Bei AWGN&ndash;Rauschen mit Varianz&nbsp; $\sigma_n^2$&nbsp; ist die Entscheidungsgrenze die Lösung folgender vektoriellen Gleichung hinsichtlich des Vektors&nbsp; $(\rho_1, \rho_2)$:
+
For AWGN noise with variance&nbsp; $\sigma_n^2$,&nbsp; the decision limit is the solution of the following vectorial equation with respect to the vector&nbsp; $(\rho_1, \rho_2)$:
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm},\hspace{0.2cm}
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm},\hspace{0.2cm}
 
\boldsymbol{ \rho } = (\rho_1 , \hspace{0.1cm}\rho_2 )\hspace{0.05cm}.$$
 
\boldsymbol{ \rho } = (\rho_1 , \hspace{0.1cm}\rho_2 )\hspace{0.05cm}.$$
  
Zusätzlich sind in der Grafik zwei Empfangswerte
+
In addition, two received values ​​
 
:$$\boldsymbol{ A }= \sqrt {E} \cdot (1.5, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ B }= \sqrt {E} \cdot (3, \hspace{0.1cm}3.5)  $$
 
:$$\boldsymbol{ A }= \sqrt {E} \cdot (1.5, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ B }= \sqrt {E} \cdot (3, \hspace{0.1cm}3.5)  $$
  
eingezeichnet. Es ist zu überprüfen, ob diese bei den entsprechenden Randbedingungen den Regionen&nbsp; $I_0$&nbsp; $($und damit der Nachricht $m_0)$&nbsp; oder&nbsp; $I_1$&nbsp; $($Nachricht $m_1)$&nbsp; zugeordnet werden sollten.
+
are drawn in the graphic. It must be checked whether these should be assigned to the regions&nbsp; $I_0$&nbsp; $($and thus the message $m_0)$&nbsp; or&nbsp; $I_1$&nbsp; $($message $m_1)$&nbsp; given the corresponding boundary conditions.
  
  
Line 31: Line 31:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum  Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]].  
+
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability| Approximation of the Error Probability]].  
* Für numerische Berechnungen kann zur Vereinfachung die Energie&nbsp; $E = 1$&nbsp; gesetzt werden.
+
* For numeric calculations, the energy&nbsp; $E = 1$&nbsp; can be set for simplification.
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wo liegt die optimale Entscheidergrenze bei gleichwahrscheinlichen Symbolen? Bei
+
{Where lies the optimal decision limit for equally probable symbols? At
 
|type="[]"}
 
|type="[]"}
 
+ $\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
 
+ $\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
Line 46: Line 46:
 
- $\rho_2 = 3$.
 
- $\rho_2 = 3$.
  
{Zu welchem Entscheidungsgebiet gehört der Empfangswert&nbsp; $A = (1.5, \ \, 2)$?
+
{To which decision area does the received value&nbsp; $A = (1.5, \ \, 2)$ belong?
 
|type="()"}
 
|type="()"}
- Zum Entscheidungsgebiet&nbsp; $I_0$,
+
- To decision area&nbsp; $I_0$,
+ zum Entscheidungsgebiet&nbsp; $I_1$.
+
+ to decision area&nbsp; $I_1$.
  
{Zu welchem Entscheidungsgebiet gehört der Empfangswert&nbsp; $B = (3, \ \, 3.5)$?
+
{To which decision area does the received value&nbsp; $B = (3, \ \, 3.5)$ belong?
 
|type="()"}
 
|type="()"}
+ Zum Entscheidungsgebiet&nbsp; $I_0$,
+
+ To decision area&nbsp; $I_0$,
- zum Entscheidungsgebiet&nbsp; $I_1$.
+
- to decision area&nbsp; $I_1$.
  
{Wie lautet die Gleichung der Entscheidungsgeraden für&nbsp; ${\rm Pr}(m_0) = 0.817, \sigma_n = 1$?
+
{What is the equation of the decision line for&nbsp; ${\rm Pr}(m_0) = 0.817, \sigma_n = 1$?
 
|type="()"}
 
|type="()"}
 
- $\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
 
- $\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
Line 63: Line 63:
 
- $\rho_2 = 3/4 \cdot \rho_1$.
 
- $\rho_2 = 3/4 \cdot \rho_1$.
  
{Welche Entscheidungen werden mit diesen neuen Regionen&nbsp; $I_0$&nbsp; und&nbsp; $I_1$&nbsp; getroffen?
+
{Which decisions are made with these new regions&nbsp; $I_0$&nbsp; and&nbsp; $I_1$?&nbsp;  
 
|type="[]"}
 
|type="[]"}
+ Der Empfangsvektor&nbsp; $A$&nbsp; wird als Nachricht &nbsp;$m_0$&nbsp; interpretiert.
+
+ The received vector &nbsp;$A$&nbsp; is interpreted as message &nbsp;$m_0$.&nbsp;  
- Der Empfangsvektor &nbsp;$A$&nbsp; wird als Nachricht &nbsp;$m_1$&nbsp; interpretiert.
+
- The received vector &nbsp;$A$&nbsp; is interpreted as message &nbsp;$m_1$.&nbsp;  
+ Der Empfangsvektor &nbsp;$B$&nbsp; wird als Nachricht &nbsp;$m_0$&nbsp; interpretiert.
+
+ The received vector &nbsp;$B$&nbsp; is interpreted as message &nbsp;$m_0$.&nbsp;  
- Der Empfangsvektor &nbsp;$B$&nbsp; wird als Nachricht &nbsp;$m_1$&nbsp; interpretiert.
+
- The received vector &nbsp;$B$&nbsp; is interpreted as message &nbsp;$m_1$.&nbsp;  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$ lautet die Gleichung der Begrenzungsgeraden zwischen den  Entscheidungsgebieten $I_0$ und $I_1$:
+
'''(1)'''&nbsp; With ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$, the equation of the boundary line between the decision areas $I_0$ and $I_1$ reads:
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2  =
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2  =
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  
Mit den gegebenen Vektorwerten, also den Zahlenwerten
+
With the given vector values, i.e. the numerical values
 
:$$|| \boldsymbol{ s }_1||^2  = 4^2 + 1^2 = 17\hspace{0.05cm}, \hspace{0.2cm}
 
:$$|| \boldsymbol{ s }_1||^2  = 4^2 + 1^2 = 17\hspace{0.05cm}, \hspace{0.2cm}
 
  || \boldsymbol{ s }_0||^2  =  1^2 + 5^2 = 26\hspace{0.05cm}, \hspace{0.2cm}
 
  || \boldsymbol{ s }_0||^2  =  1^2 + 5^2 = 26\hspace{0.05cm}, \hspace{0.2cm}
 
\boldsymbol{ s }_1 - \boldsymbol{ s }_0 = (3,\hspace{0.1cm}-4) \hspace{0.05cm}$$
 
\boldsymbol{ s }_1 - \boldsymbol{ s }_0 = (3,\hspace{0.1cm}-4) \hspace{0.05cm}$$
  
erhält man folgende Gleichung für die Entscheidungsgrenzen:
+
one obtains the following equation for the decision limits:
 
:$$3 \cdot \rho_1 - 4 \cdot \rho_2  =  ({17-26})/{2} = -  {9}/{2}
 
:$$3 \cdot \rho_1 - 4 \cdot \rho_2  =  ({17-26})/{2} = -  {9}/{2}
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\rho_2  = 3/4 \cdot \rho_1 + 9/8
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\rho_2  = 3/4 \cdot \rho_1 + 9/8
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
[[File:P_ID2033__Dig_A_4_6a.png|right|frame|Entscheidungsgerade und Entscheidungsregionen für $K=0$]]
+
[[File:P_ID2033__Dig_A_4_6a.png|right|frame|Decision line and decision regions for $K=0$]]
Die Entscheidungsgrenze liegt in der Mitte zwischen $s_0$ und $s_1$ und verläuft um $90^\circ$ gedreht gegenüber der Verbindungslinie zwischen den beiden Symbolen. Sie geht durch den Punkt $(2.5, \ \,  3)$. Richtig ist also der <u>erste Lösungsvorschlag</u>.
+
The decision limit lies in the middle between $s_0$ and $s_1$ and is rotated by $90^\circ$ compared to the connecting line between the two symbols. It goes through the point $(2.5, \ \,  3)$. So the <u>first solution</u> is correct.
  
Der Vorschlag 2 beschreibt dagegen die Verbindungsgerade selbst und $\rho_2 = 3$ ist eine Horizontale.
+
Solution 2, on the other hand, describes the connecting line itself and $\rho_2 = 3$ is a horizontal line.
  
  
'''(2)'''&nbsp; Das Entscheidungsgebiet $I_1$ sollte natürlich den Punkt $s_1$ beinhalten &nbsp;&#8658;&nbsp; Gebiet unterhalb der Entscheidungsgeraden. Punkt $A = (1.5, \ \, 2)$ gehört zu diesem Entscheidungsgebiet, wie aus der Grafik hervorgeht. Rechnerisch lässt sich dies zeigen, da die Entscheidungsgerade zum Beispiel durch den Punkt $(1.5, \ \, 2.25)$ geht und somit $(1.5, \ \,  2)$ unterhalb der Entscheidungsgeraden liegt. Richtig ist also der <u>Lösungsvorschlag 2</u>.
+
'''(2)'''&nbsp; The decision area $I_1$ should of course contain the point $s_1$ &nbsp;&#8658;&nbsp; area below the decision line. Point $A = (1.5, \ \, 2)$ belongs to this decision domain, as shown in the graphic. This can be shown mathematically, since the decision line goes through the point $(1.5, \ \, 2.25)$, for example, and thus $(1.5, \ \,  2)$ lies below the decision line. So <u>solution 2</u> is correct.
  
  
'''(3)'''&nbsp; Die Entscheidungsgerade geht auch durch den Punkt $(3, \ \,  3.375)$. $B = (3, \ \, 3.5)$ liegt oberhalb und gehört somit zum Entscheidungsgebiet $I_0$ entsprechend <u>Lösungsvorschlag 1</u>.
+
'''(3)'''&nbsp; The decision line also goes through the point $(3, \ \,  3.375)$. $B = (3, \ \, 3.5)$ lies above and therefore belongs to the decision region $I_0$ according to <u>solution 1</u>.
  
  
'''(4)'''&nbsp; Entsprechend der Gleichung auf dem Angabenblatt und den Berechnungen zur Teilaufgabe (1) gilt nun:
+
'''(4)'''&nbsp; According to the equation in the information section and the calculations for subtask (1), the following now applies:
[[File:P_ID2034__Dig_A_4_6c.png|right|frame|Entscheidungsgebiete für verschiedene $K$&ndash;Werte]]
+
[[File:P_ID2034__Dig_A_4_6c.png|right|frame|Decision areas for different $K$ values]]
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  
Mit $|| \boldsymbol{ s }_1||^2 = 17$, $|| \boldsymbol{ s }_0||^2 = 26$, $ \boldsymbol{ s }_1 \, &ndash;\boldsymbol{ s }_0 = (3, \ \, &ndash;4)$ erhält man:
+
With $|| \boldsymbol{ s }_1||^2 = 17$, $|| \boldsymbol{ s }_0||^2 = 26$, $ \boldsymbol{ s }_1 \, &ndash;\boldsymbol{ s }_0 = (3, \ \, &ndash;4)$ we obtain:
 
:$$\rho_2  = 3/4 \cdot \rho_1 + 9/8 - K /8
 
:$$\rho_2  = 3/4 \cdot \rho_1 + 9/8 - K /8
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Hierbei ist folgende Abkürzung verwendet worden:
+
The following abbreviation was used here:
 
:$$K =  2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
:$$K =  2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
2 \cdot 1^2 \cdot 1.5 = 3 \hspace{0.05cm}.$$
 
2 \cdot 1^2 \cdot 1.5 = 3 \hspace{0.05cm}.$$
  
Daraus folgt weiter:
+
From this it follows:
 
:$$\rho_2  = 3/4 \cdot \rho_1 + 9/8 - 3 /8 = 3/4 \cdot \rho_1 + 3/4
 
:$$\rho_2  = 3/4 \cdot \rho_1 + 9/8 - 3 /8 = 3/4 \cdot \rho_1 + 3/4
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die Entscheidungsgerade ist um $3/8$ nach unten verschoben (schwarze Kurve, mit "$K = 3$" bezeichnet in der Grafik). Richtig ist also der <u>Lösungsvorschlag 2</u>.
+
The decision line is shifted down by $3/8$ (black curve, labeled "$K = 3$" in the graphic). So <u>solution 2</u> is correct.
  
*Die erste Gleichung beschreibt die optimale Entscheidungsgrenze für gleichwahrscheinliche Symbole ($K = 0$, grau gestrichelt).  
+
*The first equation describes the optimal decision boundary for equally probable symbols ($K = 0$, dashed gray).  
*Die dritte Gleichung gilt für $K = \, &ndash;3$. Diese ergibt sich mit $\sigma_n^2 = 1$ für die Symbolwahrscheinlichkeiten ${\rm Pr}(m_1) \approx 0.817$ und ${\rm Pr}(m_0) \approx 0.138$ (grüne Kurve).  
+
*The third equation is valid for $K = \, &ndash;3$. This results with $\sigma_n^2 = 1$ for the symbol probabilities ${\rm Pr}(m_1) \approx 0.817$ and ${\rm Pr}(m_0) \approx 0.138$ (green curve).  
*Die violette Gerade ergibt sich mit $K = 9$, also zum Beispiel bei gleichen Wahrscheinlichkeiten wie für die schwarze Kurve, aber nun mit der Varianz $\sigma_n^2 = 3$.
+
*The violet straight line results with $K = 9$, i.e. with the same probabilities as for the black curve, but now with the variance $\sigma_n^2 = 3$.
  
  
'''(5)'''&nbsp; Bereits aus obiger Grafik erkennt man, dass nun sowohl $A$ als auch $B$ zur Entscheidungsregion $I_0$ gehören. Richtig sind also die <u>Lösungsvorschläge 1 und 3</u>.
+
'''(5)'''&nbsp; The graphic above already shows that both $A$ and $B$ now belong to the decision regio $I_0$. <u>Solutions 1 and 3</u> are correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 13:54, 5 July 2022

Signal space constellation with
$N = 2, \ M = 2$

We consider a binary message system  $(M = 2)$ that is defined by the drawn 2D signal space constellation  $(N = 2)$.  The following applies to the two possible transmitted vectors that are directly coupled to the messages  $m_0$  and  $m_1$: 

$$\boldsymbol{ s }_0 \hspace{-0.1cm} \ =\ \hspace{-0.1cm} \sqrt {E} \cdot (1,\hspace{0.1cm} 5) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_0 \hspace{0.05cm},$$
$$ \boldsymbol{ s }_1 \hspace{-0.1cm} \ =\ \hspace{-0.1cm} \sqrt {E} \cdot (4, \hspace{0.1cm}1) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_1 \hspace{0.05cm}.$$

The optimal decision boundary between the regions  $I_0 ⇔ m_0$  and  $I_1 ⇔ m_1$ is sought, whereby the following assumptions are made:

  • The following applies to subtasks (1) to (3)
$${\rm Pr}(m_0 ) = {\rm Pr}(m_1 ) = 0.5 \hspace{0.05cm}. $$
  • For subtasks (4) and (5), on the other hand, the following should apply:
$${\rm Pr}(m_0 ) = 0.817 \hspace{0.05cm},\hspace{0.2cm} {\rm Pr}(m_1 ) = 0.183\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 1.5 \hspace{0.05cm}.$$

For AWGN noise with variance  $\sigma_n^2$,  the decision limit is the solution of the following vectorial equation with respect to the vector  $(\rho_1, \rho_2)$:

$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ \rho } = (\rho_1 , \hspace{0.1cm}\rho_2 )\hspace{0.05cm}.$$

In addition, two received values ​​

$$\boldsymbol{ A }= \sqrt {E} \cdot (1.5, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ B }= \sqrt {E} \cdot (3, \hspace{0.1cm}3.5) $$

are drawn in the graphic. It must be checked whether these should be assigned to the regions  $I_0$  $($and thus the message $m_0)$  or  $I_1$  $($message $m_1)$  given the corresponding boundary conditions.



Notes:


Questions

1

Where lies the optimal decision limit for equally probable symbols? At

$\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
$\rho_2 = \, –4/3 \cdot \rho_1 + 19/3$,
$\rho_2 = 3$.

2

To which decision area does the received value  $A = (1.5, \ \, 2)$ belong?

To decision area  $I_0$,
to decision area  $I_1$.

3

To which decision area does the received value  $B = (3, \ \, 3.5)$ belong?

To decision area  $I_0$,
to decision area  $I_1$.

4

What is the equation of the decision line for  ${\rm Pr}(m_0) = 0.817, \sigma_n = 1$?

$\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
$\rho_2 = 3/4 \cdot \rho_1 + 3/4$,
$\rho_2 = 3/4 \cdot \rho_1 + 3/2$,
$\rho_2 = 3/4 \cdot \rho_1$.

5

Which decisions are made with these new regions  $I_0$  and  $I_1$? 

The received vector  $A$  is interpreted as message  $m_0$. 
The received vector  $A$  is interpreted as message  $m_1$. 
The received vector  $B$  is interpreted as message  $m_0$. 
The received vector  $B$  is interpreted as message  $m_1$. 


Solution

(1)  With ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$, the equation of the boundary line between the decision areas $I_0$ and $I_1$ reads:

$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$

With the given vector values, i.e. the numerical values

$$|| \boldsymbol{ s }_1||^2 = 4^2 + 1^2 = 17\hspace{0.05cm}, \hspace{0.2cm} || \boldsymbol{ s }_0||^2 = 1^2 + 5^2 = 26\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 - \boldsymbol{ s }_0 = (3,\hspace{0.1cm}-4) \hspace{0.05cm}$$

one obtains the following equation for the decision limits:

$$3 \cdot \rho_1 - 4 \cdot \rho_2 = ({17-26})/{2} = - {9}/{2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\rho_2 = 3/4 \cdot \rho_1 + 9/8 \hspace{0.05cm}.$$
Decision line and decision regions for $K=0$

The decision limit lies in the middle between $s_0$ and $s_1$ and is rotated by $90^\circ$ compared to the connecting line between the two symbols. It goes through the point $(2.5, \ \, 3)$. So the first solution is correct.

Solution 2, on the other hand, describes the connecting line itself and $\rho_2 = 3$ is a horizontal line.


(2)  The decision area $I_1$ should of course contain the point $s_1$  ⇒  area below the decision line. Point $A = (1.5, \ \, 2)$ belongs to this decision domain, as shown in the graphic. This can be shown mathematically, since the decision line goes through the point $(1.5, \ \, 2.25)$, for example, and thus $(1.5, \ \, 2)$ lies below the decision line. So solution 2 is correct.


(3)  The decision line also goes through the point $(3, \ \, 3.375)$. $B = (3, \ \, 3.5)$ lies above and therefore belongs to the decision region $I_0$ according to solution 1.


(4)  According to the equation in the information section and the calculations for subtask (1), the following now applies:

Decision areas for different $K$ values
$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$

With $|| \boldsymbol{ s }_1||^2 = 17$, $|| \boldsymbol{ s }_0||^2 = 26$, $ \boldsymbol{ s }_1 \, –\boldsymbol{ s }_0 = (3, \ \, –4)$ we obtain:

$$\rho_2 = 3/4 \cdot \rho_1 + 9/8 - K /8 \hspace{0.05cm}.$$

The following abbreviation was used here:

$$K = 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot 1^2 \cdot 1.5 = 3 \hspace{0.05cm}.$$

From this it follows:

$$\rho_2 = 3/4 \cdot \rho_1 + 9/8 - 3 /8 = 3/4 \cdot \rho_1 + 3/4 \hspace{0.05cm}.$$

The decision line is shifted down by $3/8$ (black curve, labeled "$K = 3$" in the graphic). So solution 2 is correct.

  • The first equation describes the optimal decision boundary for equally probable symbols ($K = 0$, dashed gray).
  • The third equation is valid for $K = \, –3$. This results with $\sigma_n^2 = 1$ for the symbol probabilities ${\rm Pr}(m_1) \approx 0.817$ and ${\rm Pr}(m_0) \approx 0.138$ (green curve).
  • The violet straight line results with $K = 9$, i.e. with the same probabilities as for the black curve, but now with the variance $\sigma_n^2 = 3$.


(5)  The graphic above already shows that both $A$ and $B$ now belong to the decision regio $I_0$. Solutions 1 and 3 are correct.