Difference between revisions of "Digital Signal Transmission/Binary Symmetric Channel"

From LNTwww
Line 26: Line 26:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$   
+
$\text{Conclusion:}$   
*Beim BSC&ndash;Modell wird der FKF&ndash;Endwert (Quadrat der mittleren Fehlerwahrscheinlichkeit), der bei anderen Modellen erst für&nbsp; $k \to \infty$&nbsp; gültig ist, bereits bei&nbsp; $k = 1$&nbsp; exakt erreicht und bleibt dann konstant.<br>
+
*In the BSC model, the final ECF value (square of the mean error probability), which in other models is valid only for&nbsp; $k \to \infty$,&nbsp; is reached exactly at&nbsp; $k = 1$&nbsp; and then remains constant.<br>
  
*Das BSC&ndash;Modell gehört zur Klasse der ''erneuernden Kanalmodelle''&nbsp;&nbsp; (englisch:&nbsp; <i>Renewal Channels</i>). Bei einem erneuernden Kanalmodell sind die Fehlerabstände statistisch voneinander unabhängig und die Fehlerkorrelationsfunktion kann in einfacher Weise iterativ berechnet werden:
+
*The BSC model belongs to the class of ''renewal channel models''. In a renewal channel model, the error distances are statistically independent of each other and the error correlation function can be calculated iteratively in a simple way:
  
 
::<math>\varphi_{e}(k) = \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot
 
::<math>\varphi_{e}(k) = \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot
 
\varphi_{e}(k - \kappa) \hspace{0.05cm}.</math>}}
 
\varphi_{e}(k - \kappa) \hspace{0.05cm}.</math>}}
  
== Binary Symmetric Channel &ndash; Fehlerabstandsverteilung==
+
== Binary Symmetric Channel &ndash; Error Distance Distribution==
 
<br>
 
<br>
Wir betrachten nun die&nbsp; <i>Fehlerabstandsverteilung</i>&nbsp; (FAV). Die Wahrscheinlichkeit für den Fehlerabstand&nbsp; $a=k$&nbsp; ergibt sich aus der Bedingung von&nbsp; $k-1$&nbsp; fehlerfreien Symbolen und eines Übertragungsfehlers zum Zeitpunkt&nbsp; $\nu +k$, vorausgesetzt, dass der letzte Fehler zum Zeitpunkt&nbsp; $\nu$&nbsp; aufgetreten ist. Man erhält:
+
We now consider the&nbsp; <i>error distance distribution</i>&nbsp; (EDD). The probability for the error distance&nbsp; $a=k$&nbsp; is obtained from the condition of&nbsp; $k-1$&nbsp; error-free symbols and one transmission error at time&nbsp; $\nu +k$, assuming that the last error occurred at time&nbsp; $\nu$.&nbsp; One obtains:
  
 
::<math>{\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.</math>
 
::<math>{\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.</math>
  
Daraus folgt:
+
It follows:
*Der Fehlerabstand&nbsp; $a = 1$&nbsp; tritt beim BSC&ndash;Modell stets mit der größten Wahrscheinlichkeit auf, und zwar für jeden Wert von&nbsp; $p$.<br>
+
*The error distance&nbsp; $a = 1$&nbsp; always occurs with the greatest probability in the BSC model, and this for any value of&nbsp; $p$.<br>
*Dieser Sachverhalt ist auf den ersten Blick etwas überraschend. Mit&nbsp; $p = 0.01$&nbsp; ergibt sich zum Beispiel der mittlere Fehlerabstand&nbsp; ${\rm E}\big[a\big] = 100$.  
+
*This fact is somewhat surprising at first glance. With&nbsp; $p = 0.01$,&nbsp; for example, the mean error distance is&nbsp; ${\rm E}\big[a\big] = 100$.  
*Trotzdem sind zwei aufeinanderfolgende Fehler&nbsp; $(a = 1)$&nbsp; um den Faktor&nbsp; $0.99^{99} \approx 2.7$&nbsp; wahrscheinlicher als der Fehlerabstand&nbsp; $a = 100$.<br><br>
+
*Nevertheless, two consecutive errors&nbsp; $(a = 1)$&nbsp; are more probable by a factor of&nbsp; $0.99^{99} \approx 2.7$&nbsp; than the error distance&nbsp; $a = 100$.<br><br>
  
Die Fehlerabstandsverteilung ergibt sich entsprechend der&nbsp; [[Digital_Signal_Transmission/Beschreibungsgrößen_digitaler_Kanalmodelle#Fehlerabstandsverteilung|allgemeinen Definition]]&nbsp; durch Summation:
+
The error distance distribution is obtained by summation according to the&nbsp; [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models#Error_distance_distribution|"general definition"]]:&nbsp;  
  
 
::<math>V_a(k) =  {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k}  (1-p)^{\kappa-1}\cdot p = (1-p)^{k-1}\hspace{0.05cm}.</math>
 
::<math>V_a(k) =  {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k}  (1-p)^{\kappa-1}\cdot p = (1-p)^{k-1}\hspace{0.05cm}.</math>
  
[[File:P ID1829 Dig T 5 2 S2 version1.png|right|Fehlerabstandsverteilung beim BSC–Modell in linearer und logarithmischer Darstellung.|class=fit]]
+
[[File:P ID1829 Dig T 5 2 S2 version1.png|right|Error distance distribution for the BSC model in linear and logarithmic plots.|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Die linke Grafik zeigt&nbsp; $V_a(k)$&nbsp; in linearer Darstellung für
+
$\text{Example 1:}$&nbsp; The left graph shows&nbsp; $V_a(k)$&nbsp; in linear representation for
*$p = 0.1$&nbsp; (blaue Kurve), und&nbsp;  
+
*$p = 0.1$&nbsp; (blue curve), and&nbsp;  
*$p = 0.02$&nbsp; (rote Kurve).  
+
*$p = 0.02$&nbsp; (red curve).  
  
  
Der Abfall erfolgt mit steigendem&nbsp; $k$&nbsp; exponentiell und ist umso steiler, je kleiner&nbsp; $p$&nbsp; ist.<br>
+
The decrease is exponential with increasing&nbsp; $k$&nbsp; and is steeper the smaller&nbsp; $p$&nbsp; is.<br>
  
Die rechte Grafik zeigt die logarithmische Darstellung. Hier verläuft der Abfall linear entsprechend
+
The right graph shows the logarithmic representation. Here the drop is linear according to
  
 
::<math>{\rm lg} \hspace{0.15cm}V_a(k) =  (k - 1) \cdot {\rm lg} \hspace{0.15cm}(1-p)\hspace{0.05cm}.</math>}}<br>
 
::<math>{\rm lg} \hspace{0.15cm}V_a(k) =  (k - 1) \cdot {\rm lg} \hspace{0.15cm}(1-p)\hspace{0.05cm}.</math>}}<br>
  
== Anwendungen des BSC–Modells ==
+
== Applications of the BSC model ==
 
<br>
 
<br>
Das BSC&ndash;Modell ist das <i>digitale Äquivalent</i>&nbsp; zum einfachsten analogen Modell &nbsp; &#8658; &nbsp; [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Einige_Eigenschaften_des_AWGN-Kanals|AWGN]]&nbsp; für ein zeitinvariantes Digitalsystem entsprechend der folgenden Grafik. Einzige Beeinträchtigung ist das Rauschen; es gibt keine Verzerrungen.<br>
+
The BSC model is the <i>digital equivalent</i>&nbsp; of the simplest analog model &nbsp; &#8658; &nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Some_properties_of_the_AWGN_channel|"AWGN"]]&nbsp; for a time-invariant digital system corresponding to the following graph. The only degradation is noise; there is no distortion.<br>
  
[[File:P ID1830 Dig T 5 2 S3 version1.png|right|frame|Zur Verwendung des BSC–Modells|class=fit]]
+
[[File:P ID1830 Dig T 5 2 S3 version1.png|right|frame|On the use of the BSC model|class=fit]]
  
Um das BSC&ndash;Modell anwenden zu können, muss das Digitalsystem folgende Voraussetzungen erfüllen:
+
To use the BSC model, the digital system must meet the following requirements:
*redundanzfreie Binärcodierung &nbsp; &#8658; &nbsp; keine Kanalcodierung und &ndash;decodierung,<br>
+
*redundancy-free binary encoding &nbsp; &#8658; &nbsp; no channel encoding and decoding,<br>
*Störung entsprechend dem AWGN&ndash;Modell &nbsp; &#8658; &nbsp; additiv, weiß und gaußverteilt,<br>
+
*noise according to the AWGN model &nbsp; &#8658; &nbsp; additive, white and Gaussian distributed,<br>
*keine nichtlinearen oder linearen Verzerrungen durch die Bauteile von <br>Sender und Empfänger,<br>
+
*no non-linear or linear distortions due to the components of the <br>transmitter and receiver,<br>
*Schwellenwertentscheider mit symmetrischer Entscheiderschwelle,<br>
+
*threshold decision with symmetric decision threshold,<br>
*keine Fremdeinflüsse wie Nebensprechen, Wählimpulse oder elektromagnetische Störfelder.<br>
+
*no extraneous influences such as crosstalk, dial pulses or electromagnetic interference fields.<br>
 
<br clear=all>
 
<br clear=all>
Bei einem&nbsp; ''Funksystem''&nbsp; mit einer direkten Sichtverbindung zwischen Sender und Empfänger ist die Anwendung des BSC&ndash;Modells oft gerechtfertigt, nicht jedoch, wenn Fadingeinflüsse  &nbsp; &#8658; &nbsp;[[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Rayleigh.E2.80.93_und_Riceverteilung|Rayleigh oder Rice]]&nbsp; eine Rolle spielen oder wenn Echos  auftreten können &nbsp; &#8658; &nbsp;[[Mobile_Communications/Mehrwegeempfang_beim_Mobilfunk|Mehrwegeempfang]].<br>
+
For a&nbsp; ''radio system''&nbsp; with a direct line-of-sight between transmitter and receiver, the application of the BSC model is often justified, but not if fading influences &nbsp; &#8658; &nbsp;[[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Rayleigh_and_Rice_Distribution|"Rayleigh or Rice"]]&nbsp; play a role or if echoes may occur &nbsp; &#8658; &nbsp;[[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications|"multi-path reception"]].<br>
  
Bei&nbsp; ''leitungsgebundener Übertragung''&nbsp; (zum Beispiel&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_DSL|DSL]], aber auch bei optischer Übertragung) sind dagegen nach Aussagen von Netzbetreibern statistisch unabhängige Fehler eher die Ausnahme. Treten bei der Datenübertragung über das Fernsprechnetz Fehler auf, dann meist gehäuft.  
+
In contrast, according to network operators, statistically independent errors tend to be the exception in the case of&nbsp; ''wireline transmission''&nbsp; (for example,&nbsp; [[Examples_of_Communication_Systems/General_Description_of_DSL|"DSL"]], but also optical transmission). If errors occur during data transmission via the telephone network, they are usually clustered.
  
Man spricht in diesem Fall von so genannten&nbsp; <i>Bündelfehlern</i>, die im nächsten Kapitel behandelt werden.<br>
+
In this case, we speak of so-called&nbsp; <i>burst errors</i>, which will be discussed in the next chapter.<br>
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_5.3:_AWGN-_und_BSC-Modell|Aufgabe 5.3:&nbsp; AWGN- und BSC-Modell]]
+
[[Aufgaben:Exercise_5.3:_AWGN_and_BSC_Model|Exercise 5.3:&nbsp; AWGN and BSC Model]]
  
[[Aufgaben:5.3Z_Analyse_des_BSC-Modells|Aufgabe 5.3Z:&nbsp; Analyse des BSC-Modell]]
+
[[Aufgaben:Exercise_5.3Z:_Analysis_of_the_BSC_Model|Exercise 5.3Z:&nbsp; Analysis of the BSC Model]]
  
[[Aufgaben:5.4 Ist das BSC-Modell erneuernd?|Aufgabe 5.4:&nbsp; Ist das BSC-Modell erneuernd?]]
+
[[Aufgaben:Exercise_5.4:Is_the_BSC_Model_Renewing%3F|Exercise 5.4:&nbsp; Is the BSC Model Renewing?]]
  
[[Aufgaben:5.5 Fehlerfolge und Fehlerabstandsfolge|Aufgabe 5.5:&nbsp; Fehlerfolge und Fehlerabstandsfolge]]
+
[[Aufgaben:Exercise_5.5:_Error_Sequence_and_Error_Distance_Sequence|Exercise 5.5:&nbsp; Error Sequence and Error Distance Sequence]]
  
  
 
{{Display}}
 
{{Display}}

Revision as of 12:52, 26 August 2022

Binary Symmetric Channel – Model and Error Correlation Function


The left graph shows the BSC model, the simplest model of a digital transmission system.

BSC model and associated error correlation function

The name stands for  Binary Symmetric Channel  and states that this model can only be used for binary systems with symmetrical falsification properties. Further applies:

  • The BSC model is suitable for the study and generation of a sequence of errors with statistically independent errors. Such a channel is also called memory-free and, unlike the  "burst error channel models",  only a single channel state exists.
  • The two symbols $($for example  $\rm L$  and  $\rm H)$  are each falsified with the same probability  $p$,  so that the mean error probability  $p_{\rm M} = p$  is also independent of the symbol probabilities  $p_{\rm L}$  and  $p_{\rm H}$.

The right graph shows the  error correlation function  (ECF) of the BSC model:

\[\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu + k}\big] = \left\{ \begin{array}{c} p \\ p^2 \end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.25cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.25cm} k > 0 \hspace{0.05cm}.\\ \end{array}\]

$\text{Conclusion:}$ 

  • In the BSC model, the final ECF value (square of the mean error probability), which in other models is valid only for  $k \to \infty$,  is reached exactly at  $k = 1$  and then remains constant.
  • The BSC model belongs to the class of renewal channel models. In a renewal channel model, the error distances are statistically independent of each other and the error correlation function can be calculated iteratively in a simple way:
\[\varphi_{e}(k) = \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot \varphi_{e}(k - \kappa) \hspace{0.05cm}.\]

Binary Symmetric Channel – Error Distance Distribution


We now consider the  error distance distribution  (EDD). The probability for the error distance  $a=k$  is obtained from the condition of  $k-1$  error-free symbols and one transmission error at time  $\nu +k$, assuming that the last error occurred at time  $\nu$.  One obtains:

\[{\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.\]

It follows:

  • The error distance  $a = 1$  always occurs with the greatest probability in the BSC model, and this for any value of  $p$.
  • This fact is somewhat surprising at first glance. With  $p = 0.01$,  for example, the mean error distance is  ${\rm E}\big[a\big] = 100$.
  • Nevertheless, two consecutive errors  $(a = 1)$  are more probable by a factor of  $0.99^{99} \approx 2.7$  than the error distance  $a = 100$.

The error distance distribution is obtained by summation according to the  "general definition"

\[V_a(k) = {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k} (1-p)^{\kappa-1}\cdot p = (1-p)^{k-1}\hspace{0.05cm}.\]
Error distance distribution for the BSC model in linear and logarithmic plots.

$\text{Example 1:}$  The left graph shows  $V_a(k)$  in linear representation for

  • $p = 0.1$  (blue curve), and 
  • $p = 0.02$  (red curve).


The decrease is exponential with increasing  $k$  and is steeper the smaller  $p$  is.

The right graph shows the logarithmic representation. Here the drop is linear according to

\[{\rm lg} \hspace{0.15cm}V_a(k) = (k - 1) \cdot {\rm lg} \hspace{0.15cm}(1-p)\hspace{0.05cm}.\]


Applications of the BSC model


The BSC model is the digital equivalent  of the simplest analog model   ⇒   "AWGN"  for a time-invariant digital system corresponding to the following graph. The only degradation is noise; there is no distortion.

On the use of the BSC model

To use the BSC model, the digital system must meet the following requirements:

  • redundancy-free binary encoding   ⇒   no channel encoding and decoding,
  • noise according to the AWGN model   ⇒   additive, white and Gaussian distributed,
  • no non-linear or linear distortions due to the components of the
    transmitter and receiver,
  • threshold decision with symmetric decision threshold,
  • no extraneous influences such as crosstalk, dial pulses or electromagnetic interference fields.


For a  radio system  with a direct line-of-sight between transmitter and receiver, the application of the BSC model is often justified, but not if fading influences   ⇒  "Rayleigh or Rice"  play a role or if echoes may occur   ⇒  "multi-path reception".

In contrast, according to network operators, statistically independent errors tend to be the exception in the case of  wireline transmission  (for example,  "DSL", but also optical transmission). If errors occur during data transmission via the telephone network, they are usually clustered.

In this case, we speak of so-called  burst errors, which will be discussed in the next chapter.

Exercises for the chapter


Exercise 5.3:  AWGN and BSC Model

Exercise 5.3Z:  Analysis of the BSC Model

Exercise 5.4:  Is the BSC Model Renewing?

Exercise 5.5:  Error Sequence and Error Distance Sequence