Difference between revisions of "Aufgaben:Exercise 5.2: Error Correlation Function"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models}}
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models}}
  
[[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Probabilities of error distances and ECF]]
+
[[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Error distance probability & error correlation function]]
 
For the characterization of digital channel models one uses among other things
 
For the characterization of digital channel models one uses among other things
* the error correlation function (ECF)
+
* the  "error correlation function"  $\rm (ECF)$
 
:$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu +
 
:$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu +
 
k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
 
k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  
* the error distance probabilities
+
* the  "error distance probabilities"
 
:$${\rm Pr}( a =k)  \hspace{0.05cm}, \hspace{0.2cm} k \ge
 
:$${\rm Pr}( a =k)  \hspace{0.05cm}, \hspace{0.2cm} k \ge
 
1\hspace{0.05cm}.$$
 
1\hspace{0.05cm}.$$
  
 
Here denote:
 
Here denote:
* $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.  
+
* $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.
* $a$  indicates the error distance.
+
 +
* $a$  indicates the error distance with  $a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}$.
  
  
Two directly consecutive bit errors are thus characterized by the error distance  $a = 1$. 
+
Two directly consecutive symbol errors are thus characterized by the error distance  $a = 1$. 
  
 
The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.  
 
The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.  
Line 26: Line 27:
  
  
 
+
Note:  The exercise covers the subject matter of the chapter  [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models|"Parameters of Digital Channel Models"]].
 
 
''Note:''
 
* The exercise covers the subject matter of the chapter  [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models|"Parameters of Digital Channel Models"]].
 
 
   
 
   
  
Line 35: Line 33:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Which value results for the average error probability?
+
{Which value results for the mean error probability?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm M} \ = \ ${ 0.1 3% }
 
$p_{\rm M} \ = \ ${ 0.1 3% }
Line 43: Line 41:
 
${\rm E}\big[a\big] \ = \ ${ 10 3% }
 
${\rm E}\big[a\big] \ = \ ${ 10 3% }
  
{Calculate the value of the error correlation function (ECF) for&nbsp; $k = 1$.
+
{Calculate the value of the error correlation function&nbsp; \rm (ECF)$&nbsp; for&nbsp; $k = 1$.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_e(k = 1) \ = \ ${ 0.0309 3% }  
 
$\varphi_e(k = 1) \ = \ ${ 0.0309 3% }  

Revision as of 16:32, 3 September 2022

Error distance probability & error correlation function

For the characterization of digital channel models one uses among other things

  • the  "error correlation function"  $\rm (ECF)$
$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu + k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  • the  "error distance probabilities"
$${\rm Pr}( a =k) \hspace{0.05cm}, \hspace{0.2cm} k \ge 1\hspace{0.05cm}.$$

Here denote:

  • $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.
  • $a$  indicates the error distance with  $a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}$.


Two directly consecutive symbol errors are thus characterized by the error distance  $a = 1$. 

The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.

  • Some data are missing in the table.
  • These values are to be calculated from the given values.



Note:  The exercise covers the subject matter of the chapter  "Parameters of Digital Channel Models".


Questions

1

Which value results for the mean error probability?

$p_{\rm M} \ = \ $

2

Which value results for the mean error distance?

${\rm E}\big[a\big] \ = \ $

3

Calculate the value of the error correlation function  \rm (ECF)$  for  $k = 1$.

$\varphi_e(k = 1) \ = \ $

4

What is the approximation for the probability of the error distance  $a = 2$?

${\rm Pr}(a = 2) \ = \ $


Solution

(1)  The mean probability of error is equal to the ECF value for $k = 0$. Namely, because of $e_{\nu} ∈ \{0, 1\}$:

$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]= p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1} \hspace{0.05cm}.$$


(2)  The mean error distance is equal to the reciprocal of the mean error probability. That is:

$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$


(3)  According to the definition equation and "Bayes' theorem", the following result is obtained:

$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot (e_{\nu + 1}=1)]={\rm Pr}(e_{\nu + 1}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm Pr}(e_{\nu} = 1) \hspace{0.05cm}.$$
  • The first probability is equal to ${\rm Pr}(a = 1)$ and the second probability is equal to $p_{\rm M}$:
$$\varphi_{e}(k = 1) = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309} \hspace{0.05cm}.$$


(4)  The ECF value $\varphi_e(k = 2)$ can be interpreted (approximately) as follows:

$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k = 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$

This probability is composed of  "At time $\nu+1$ an error occurs"  and  "At time $\nu+1$ there is no error":

$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$

In the calculation, it was assumed that the individual error distances are statistically independent of each other.

  • However, this assumption is valid only for a special class of channel models called "renewing".
  • The burst error model considered here does not satisfy this condition.
  • The actual probability  ${\rm Pr}(a = 2) = 0.1675$  therefore deviates slightly from the value calculated here  $(0.1715)$.