Difference between revisions of "Aufgaben:Exercise 3.7Z: Which Code is Catastrophic?"
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}} |
− | [[File:P_ID2671__KC_Z_3_7.png|right|frame| | + | [[File:P_ID2671__KC_Z_3_7.png|right|frame|Encoder for $m = 3$ and state transition diagram.]] |
− | + | The adjacent graph shows. | |
− | * | + | * two different $\text{ Coder A }$ and $\text{ Coder B}$, each with memory $m = 3$ (top), |
− | * | + | * two state transition diagrams, labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$ (bottom). |
− | In | + | In the last subtask, you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$. |
− | + | First, the three transfer functions | |
* $G(D) = 1 + D + D^2 + D^3$, | * $G(D) = 1 + D + D^2 + D^3$, | ||
− | * $G(D) = 1 + D^3$, | + | * $G(D) = 1 + D^3$, and |
* $G(D) = 1 + D + D^3$ | * $G(D) = 1 + D + D^3$ | ||
− | + | are analyzed and then the initial sequences $\underline{x}$ under the condition | |
:$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm} | :$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm} | ||
U(D)= \frac{1}{1+D}$$ | U(D)= \frac{1}{1+D}$$ | ||
− | + | is calculated. These transfer functions are directly related to the outlined coders. | |
− | * | + | *Furthermore, it remains to be clarified which of the two codes is "catastrophic". |
− | * | + | *One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors. |
Line 47: | Line 47: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What output sequence $\underline{x}$ results for $\underline{u} = \underline{1}$ and $G(D) = 1 + D + D^2 + D^3$? |
|type="[]"} | |type="[]"} | ||
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$, | - $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$, | ||
+ $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$, | + $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$, | ||
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$. | - $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$. | ||
− | + | + | + The output sequence $\underline{x}$ is time limited. |
− | { | + | {What output sequence $\underline{x}$ results for $\underline{u} = \underline{1}$ and $G(D) = 1 + D^3$? |
|type="[]"} | |type="[]"} | ||
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$, | - $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$, | ||
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$, | - $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$, | ||
+ $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$, | + $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$, | ||
− | + | + | + The output sequence $\underline{x}$ is time limited. |
− | { | + | {What output sequence $\underline{x}$ results for $\underline{u} = \underline{1}$ and $G(D) = 1 + D + D^3$? |
|type="[]"} | |type="[]"} | ||
+ $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$, | + $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$, | ||
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$, | - $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$, | ||
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$, | - $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$, | ||
− | - | + | - The output sequence $\underline{x}$ is finite in time. |
− | { | + | {What is the code sequence $\underline{x}$ of $\text{ encoder A }$ for the sequence of ones at the input? |
|type="[]"} | |type="[]"} | ||
+ $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$, | + $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$, | ||
- $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$, | - $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$, | ||
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$. | - $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$. | ||
− | - | + | - The code sequence $\underline{x}$ contains finitely many ones. |
− | { | + | {What is the code sequence $\underline{x}$ of $\text{ encoder B }$ for the sequence of ones at the input? |
|type="[]"} | |type="[]"} | ||
- $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$, | - $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$, | ||
+ $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$, | + $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$, | ||
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$. | - $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$. | ||
− | + | + | + The code sequence $\underline{x}$ contains finitely many ones. |
− | { | + | {Which statements are true for $\text{ encoder B }$? |
|type="[]"} | |type="[]"} | ||
− | - | + | - To $\text{ encoder B }$ belongs the $\text{ diagram 1}$. |
− | + | + | + To $\text{ encoder B }$ belongs the $\text{ diagram 2}$. |
− | + | + | + The $\text{ encoder B }$ is catastrophic. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Applicable are <u>solutions 2 and 4</u>: |
− | * | + | *The $D$ transform of the code sequence $\underline{x}$ is given by $U(D) = 1/(1+ D)$ to be. |
:$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
− | \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1 | + | \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$ |
− | * | + | *Consider $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$. |
− | '''(2)''' | + | '''(2)''' Because of $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$, <u>solutions 3 and 4</u> are applicable here: |
:$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | :$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
\underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$ | \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' Only the <u>proposed solution 1</u> is correct: |
− | * | + | *The polynomial division $(1 + D + D^3)$ by $(1 + D)$ is not possible in the binary Galois field without a remainder. |
− | * | + | *You get $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $ ⇒ Output sequence $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$ which extends to infinity. |
− | + | '''(4)''' Only the <u>proposed solution 1</u> is correct: | |
− | '''(4)''' | + | *The transfer function matrix of $\text{ coder A }$ is: |
− | * | ||
:$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$ | :$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$ | ||
− | * | + | *The first code bit in each case is therefore given by the sequence corresponding to subtask (3) and the second bit by the sequence corresponding to subtask (1): |
:$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm} | :$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm} | ||
\underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm} | \underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm} | ||
Line 123: | Line 122: | ||
− | '''(5)''' | + | '''(5)''' Applicable are <u>suggested solutions 2 and 4</u>: |
− | * | + | *The transfer function of $\text{ coder B }$ is $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$. |
− | * | + | *The first code sequence now results according to subtask (2), while $\underline{x}^{(2)}$ still corresponds to subtask (1). |
− | * | + | *Thus we get here $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$ ⇒ Solution suggestion 2. |
− | * | + | *But solution proposition 4 is also correct. Under the assumption made here $\underline{u} = \underline{1}$ the code sequence $\underline{x}$ contains only five ones. |
− | *In | + | *In the next subtask this fact is taken up again. |
− | '''(6)''' | + | '''(6)''' Correct are the <u>proposed solutions 2 and 3</u>: |
− | + | WAs can be seen from state diagram 1, here the information sequence $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$ to the code sequence $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$. This means: | |
− | * | + | * To the $\text{ encoder A }$ belongs the state transition diagram 1. |
− | * | + | * To $\text{ encoder B }$ belongs the state transition diagram 2 ⇒ Proposed solution 2. |
− | + | For the $\text{ encoder B }$, the following statements hold: | |
* $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$, | * $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$, | ||
* $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$. | * $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$. | ||
Line 146: | Line 145: | ||
Das bedeutet: | Das bedeutet: | ||
− | * | + | *With only five bit errors at positions 1, 2, 3, 5, 6, the zero sequence is decoded as a one sequence and vice versa. |
− | * | + | *Such a code is called <b>catastrophic</b> ⇒ Solution suggestion 3. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 15:10, 3 October 2022
The adjacent graph shows.
- two different $\text{ Coder A }$ and $\text{ Coder B}$, each with memory $m = 3$ (top),
- two state transition diagrams, labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$ (bottom).
In the last subtask, you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$.
First, the three transfer functions
- $G(D) = 1 + D + D^2 + D^3$,
- $G(D) = 1 + D^3$, and
- $G(D) = 1 + D + D^3$
are analyzed and then the initial sequences $\underline{x}$ under the condition
- $$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm} U(D)= \frac{1}{1+D}$$
is calculated. These transfer functions are directly related to the outlined coders.
- Furthermore, it remains to be clarified which of the two codes is "catastrophic".
- One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors.
Hints:
- This exercise belongs to the chapter "Code description with state and trellis diagram".
- Reference is made in particular to the sections.
- Two more polynomial products in ${\rm GF}(2)$ are given:
- $$(1+D) \cdot (1+D^2) = 1+D +D^2+D^3\hspace{0.05cm},$$
- $$(1+D) \cdot (1+D+D^2) = 1+D^3\hspace{0.05cm}.$$
Questions
Solution
- The $D$ transform of the code sequence $\underline{x}$ is given by $U(D) = 1/(1+ D)$ to be.
- $$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
- Consider $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.
(2) Because of $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$, solutions 3 and 4 are applicable here:
- $$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$
(3) Only the proposed solution 1 is correct:
- The polynomial division $(1 + D + D^3)$ by $(1 + D)$ is not possible in the binary Galois field without a remainder.
- You get $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $ ⇒ Output sequence $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$ which extends to infinity.
(4) Only the proposed solution 1 is correct:
- The transfer function matrix of $\text{ coder A }$ is:
- $${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
- The first code bit in each case is therefore given by the sequence corresponding to subtask (3) and the second bit by the sequence corresponding to subtask (1):
- $$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm} \underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}= (11,\hspace{0.05cm} 00,\hspace{0.05cm} 01,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.05cm}.$$
(5) Applicable are suggested solutions 2 and 4:
- The transfer function of $\text{ coder B }$ is $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.
- The first code sequence now results according to subtask (2), while $\underline{x}^{(2)}$ still corresponds to subtask (1).
- Thus we get here $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$ ⇒ Solution suggestion 2.
- But solution proposition 4 is also correct. Under the assumption made here $\underline{u} = \underline{1}$ the code sequence $\underline{x}$ contains only five ones.
- In the next subtask this fact is taken up again.
(6) Correct are the proposed solutions 2 and 3:
WAs can be seen from state diagram 1, here the information sequence $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$ to the code sequence $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$. This means:
- To the $\text{ encoder A }$ belongs the state transition diagram 1.
- To $\text{ encoder B }$ belongs the state transition diagram 2 ⇒ Proposed solution 2.
For the $\text{ encoder B }$, the following statements hold:
- $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$,
- $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.
Das bedeutet:
- With only five bit errors at positions 1, 2, 3, 5, 6, the zero sequence is decoded as a one sequence and vice versa.
- Such a code is called catastrophic ⇒ Solution suggestion 3.