Difference between revisions of "Aufgaben:Exercise 3.7Z: Which Code is Catastrophic?"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm}}
+
{{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}}
  
[[File:P_ID2671__KC_Z_3_7.png|right|frame|Codierer  für  $m = 3$  und Zustandsübergangsdiagramm]]
+
[[File:P_ID2671__KC_Z_3_7.png|right|frame|Encoder for  $m = 3$  and state transition diagram.]]
Die nebenstehende Grafik zeigt
+
The adjacent graph shows.
* zwei unterschiedliche $\text{ Coder A }$ und $\text{ Coder B}$, jeweils mit dem Gedächtnis  $m = 3$  (oben),
+
* two different $\text{ Coder A }$ and $\text{ Coder B}$, each with memory  $m = 3$  (top),
* zwei Zustandsübergangsdiagramme, bezeichnet mit $\text{ Diagramm 1 }$ und $\text{ Diagramm 2 }$ (unten).
+
* two state transition diagrams, labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$ (bottom).
  
  
In der letzten Teilaufgabe sollen Sie entscheiden, welches Diagramm zum $\text{ Coder A }$ gehört und welches zum $\text{ Coder B}$.
+
In the last subtask, you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$.
  
Zunächst werden die drei Übertragungsfunktionen
+
First, the three transfer functions
 
* $G(D) = 1 + D + D^2 + D^3$,
 
* $G(D) = 1 + D + D^2 + D^3$,
* $G(D) = 1 + D^3$, und
+
* $G(D) = 1 + D^3$, and
 
* $G(D) = 1 + D + D^3$
 
* $G(D) = 1 + D + D^3$
  
  
analysiert und anschließend die Ausgangssequenzen  $\underline{x}$  unter der Voraussetzung
+
are analyzed and then the initial sequences  $\underline{x}$  under the condition
 
:$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}
 
:$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}
 
U(D)= \frac{1}{1+D}$$
 
U(D)= \frac{1}{1+D}$$
  
berechnet. Diese Übertragungsfunktionen stehen im direkten Zusammenhang mit den skizzierten Codierern.
+
is calculated. These transfer functions are directly related to the outlined coders.
  
*Desweiteren ist noch zu klären, welcher der beiden Codes "katastrophal" ist.  
+
*Furthermore, it remains to be clarified which of the two codes is "catastrophic".  
*Von einem solchen spricht man dann, wenn eine endliche Anzahl von Übertragungsfehlern zu unendlich vielen Decodierfehlern führt.  
+
*One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors.  
  
  
Line 47: Line 47:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Ausgangssequenz&nbsp; $\underline{x}$&nbsp; ergibt sich für&nbsp; $\underline{u} = \underline{1}$&nbsp; und&nbsp; $G(D) = 1 + D + D^2 + D^3$?
+
{What output sequence&nbsp; $\underline{x}$&nbsp; results for&nbsp; $\underline{u} = \underline{1}$&nbsp; and&nbsp; $G(D) = 1 + D + D^2 + D^3$?
 
|type="[]"}
 
|type="[]"}
 
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
 
+ $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
 
+ $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$.
 
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$.
+ Die Ausgangsfolge&nbsp; $\underline{x}$&nbsp; ist zeitlich begrenzt.
+
+ The output sequence&nbsp; $\underline{x}$&nbsp; is time limited.
  
{Welche Ausgangssequenz&nbsp; $\underline{x}$&nbsp; ergibt sich für&nbsp; $\underline{u} = \underline{1}$&nbsp; und&nbsp; $G(D) = 1 + D^3$?
+
{What output sequence&nbsp; $\underline{x}$&nbsp; results for&nbsp; $\underline{u} = \underline{1}$&nbsp; and&nbsp; $G(D) = 1 + D^3$?
 
|type="[]"}
 
|type="[]"}
 
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
 
+ $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
 
+ $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
+ Die Ausgangsfolge&nbsp; $\underline{x}$&nbsp; ist zeitlich begrenzt.
+
+ The output sequence&nbsp; $\underline{x}$&nbsp; is time limited.
  
{Welche Ausgangssequenz&nbsp; $\underline{x}$&nbsp; ergibt sich für&nbsp; $\underline{u} = \underline{1}$&nbsp; und&nbsp; $G(D) = 1 + D + D^3$?
+
{What output sequence&nbsp; $\underline{x}$&nbsp; results for&nbsp; $\underline{u} = \underline{1}$&nbsp; and&nbsp; $G(D) = 1 + D + D^3$?
 
|type="[]"}
 
|type="[]"}
 
+ $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
 
+ $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
- Die Ausgangsfolge&nbsp; $\underline{x}$ ist zeitlich begrenzt.
+
- The output sequence&nbsp; $\underline{x}$ is finite in time.
  
{Wie lautet die Codesequenz&nbsp; $\underline{x}$&nbsp; von $\text{ Coder A }$ für die Eins&ndash;Sequenz am Eingang?
+
{What is the code sequence&nbsp; $\underline{x}$&nbsp; of $\text{ encoder A }$ for the sequence of ones at the input?
 
|type="[]"}
 
|type="[]"}
 
+ $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
 
+ $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$.
 
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$.
- Die Codesequenz&nbsp; $\underline{x}$&nbsp; beinhaltet endlich viele Einsen.
+
- The code sequence&nbsp; $\underline{x}$&nbsp; contains finitely many ones.
  
{Wie lautet die Codesequenz&nbsp; $\underline{x}$&nbsp; von $\text{ Coder B }$ für die Eins&ndash;Sequenz am Eingang?
+
{What is the code sequence&nbsp; $\underline{x}$&nbsp; of $\text{ encoder B }$ for the sequence of ones at the input?
 
|type="[]"}
 
|type="[]"}
 
- $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
 
- $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
 
+ $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$,
 
+ $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$,
 
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$.
 
- $\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$.
+ Die Codesequenz $\underline{x}$ beinhaltet endlich viele Einsen.
+
+ The code sequence $\underline{x}$ contains finitely many ones.
  
{Welche Aussagen treffen für $\text{ Coder B }$ zu?
+
{Which statements are true for $\text{ encoder B }$?
 
|type="[]"}
 
|type="[]"}
- Zu $\text{ Coder B }$ gehört das $\text{ Diagramm 1}$.
+
- To $\text{ encoder B }$ belongs the $\text{ diagram 1}$.
+ Zu $\text{ Coder B }$ gehört das $\text{ Diagramm 2}$.
+
+ To $\text{ encoder B }$ belongs the $\text{ diagram 2}$.
+ Der $\text{ Coder B }$ ist katastrophal.
+
+ The $\text{ encoder B }$ is catastrophic.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Zutreffend sind die <u>Lösungsvorschläge 2 und 4</u>:
+
'''(1)'''&nbsp; Applicable are <u>solutions 2 and 4</u>:
*Die $D$&ndash;Transformierte der Codesequenz $\underline{x}$ ergibt sich mit $U(D) = 1/(1+ D)$ zu
+
*The $D$ transform of the code sequence $\underline{x}$ is given by $U(D) = 1/(1+ D)$ to be.
 
:$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
   \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
+
   \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
*Berücksichtigt wurde $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.
+
*Consider $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.
  
  
  
'''(2)'''&nbsp; Wegen $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$ sind hier die <u>Lösungsvorschläge 3 und 4</u> zutreffend:
+
'''(2)'''&nbsp; Because of $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$, <u>solutions 3 and 4</u> are applicable here:
 
:$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$
 
   \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Richtig ist allein der <u>Lösungsvorschlag 1</u>:
+
'''(3)'''&nbsp; Only the <u>proposed solution 1</u> is correct:
*Die Polynomdivision $(1 + D + D^3)$ durch $(1 + D)$ ist im binären Galoisfeld nicht ohne Rest möglich.  
+
*The polynomial division $(1 + D + D^3)$ by $(1 + D)$ is not possible in the binary Galois field without a remainder.  
*Man erhält $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $ &nbsp; &#8658; &nbsp; Ausgangssequenz $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$, die sich bis ins Unendliche erstreckt.  
+
*You get $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $ &nbsp; &#8658; &nbsp; Output sequence $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$ which extends to infinity.  
  
  
 
+
'''(4)'''&nbsp; Only the <u>proposed solution 1</u> is correct:
'''(4)'''&nbsp; Richtig ist allein der <u>Lösungsvorschlag 1</u>:
+
*The transfer function matrix of $\text{ coder A }$ is:
*Die Übertragungsfunktionsmatrix von $\text{ Coder A }$ lautet:
 
 
:$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
 
:$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
*Das jeweils erste Codebit ist deshalb durch die Sequenz entsprechend Teilaufgabe (3) gegeben und das zweite Bit durch die Sequenz entsprechend Teilaufgabe (1):
+
*The first code bit in each case is therefore given by the sequence corresponding to subtask (3) and the second bit by the sequence corresponding to subtask (1):
 
:$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm}
 
:$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm}
 
\underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}  \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm}
 
\underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}  \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm}
Line 123: Line 122:
  
  
'''(5)'''&nbsp; Zutreffend sind die <u>Lösungsvorschläge 2 und 4</u>:
+
'''(5)'''&nbsp; Applicable are <u>suggested solutions 2 and 4</u>:
*Die Übertragungsfunktion von $\text{ Coder B }$ lautet $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.  
+
*The transfer function of $\text{ coder B }$ is $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.  
*Die erste Codesequenz ergibt sich nun entsprechend Teilaufgabe (2), während $\underline{x}^{(2)}$ weiterhin der Teilaufgabe (1) entspricht.  
+
*The first code sequence now results according to subtask (2), while $\underline{x}^{(2)}$ still corresponds to subtask (1).  
*Somit erhält man hier $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,  \text{...} \hspace{0.05cm})$ &nbsp; &#8658; &nbsp; Lösungsvorschlag 2.
+
*Thus we get here $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$ &nbsp; &#8658; &nbsp; Solution suggestion 2.
*Richtig ist aber auch der Lösungsvorschlag 4. Unter der hier getroffenen Annahme&nbsp; $\underline{u} = \underline{1}$&nbsp; beinhaltet die Codesequenz $\underline{x}$ nur fünf Einsen.  
+
*But solution proposition 4 is also correct. Under the assumption made here&nbsp; $\underline{u} = \underline{1}$&nbsp; the code sequence $\underline{x}$ contains only five ones.  
*In der nächsten Teilaufgabe wird dieser Sachverhalt nochmals aufgegriffen.
+
*In the next subtask this fact is taken up again.
  
  
  
  
'''(6)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:  
+
'''(6)'''&nbsp; Correct are the <u>proposed solutions 2 and 3</u>:  
  
Wie aus dem Zustandsdiagramm 1 hervorgeht, führt hier die Informationssequenz $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$ zur Codesequenz $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$. Dies bedeutet:
+
WAs can be seen from state diagram 1, here the information sequence $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$ to the code sequence $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$. This means:
* Zum $\text{ Coder A }$ gehört das Zustandsübergangsdiagramm 1.
+
* To the $\text{ encoder A }$ belongs the state transition diagram 1.
* Zum $\text{ Coder B }$ gehört das Zustandsübergangsdiagramm 2 &nbsp; &#8658; &nbsp; Lösungsvorschlag 2.
+
* To $\text{ encoder B }$ belongs the state transition diagram 2 &nbsp; &#8658; &nbsp; Proposed solution 2.
  
  
Für den $\text{ Coder B }$ gelten dabei folgende Aussagen:
+
For the $\text{ encoder B }$, the following statements hold:
 
* $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \,  \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \,  \text{...} \hspace{0.05cm})$,
 
* $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \,  \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \,  \text{...} \hspace{0.05cm})$,
 
* $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.
 
* $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.
Line 146: Line 145:
  
 
Das bedeutet:  
 
Das bedeutet:  
*Mit nur fünf Bitfehlern an den Positionen 1, 2, 3, 5, 6 wird die Nullfolge als Einsfolge decodiert und umgekehrt.  
+
*With only five bit errors at positions 1, 2, 3, 5, 6, the zero sequence is decoded as a one sequence and vice versa.  
*Einen solchen Code nennt man <b>katastrophal</b> &nbsp; &#8658; &nbsp; Lösungsvorschlag 3.
+
*Such a code is called <b>catastrophic</b> &nbsp; &#8658; &nbsp; Solution suggestion 3.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 15:10, 3 October 2022

Encoder for  $m = 3$  and state transition diagram.

The adjacent graph shows.

  • two different $\text{ Coder A }$ and $\text{ Coder B}$, each with memory  $m = 3$  (top),
  • two state transition diagrams, labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$ (bottom).


In the last subtask, you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$.

First, the three transfer functions

  • $G(D) = 1 + D + D^2 + D^3$,
  • $G(D) = 1 + D^3$, and
  • $G(D) = 1 + D + D^3$


are analyzed and then the initial sequences  $\underline{x}$  under the condition

$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm} U(D)= \frac{1}{1+D}$$

is calculated. These transfer functions are directly related to the outlined coders.

  • Furthermore, it remains to be clarified which of the two codes is "catastrophic".
  • One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors.





Hints:

$$(1+D) \cdot (1+D^2) = 1+D +D^2+D^3\hspace{0.05cm},$$
$$(1+D) \cdot (1+D+D^2) = 1+D^3\hspace{0.05cm}.$$





Questions

1

What output sequence  $\underline{x}$  results for  $\underline{u} = \underline{1}$  and  $G(D) = 1 + D + D^2 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$.
The output sequence  $\underline{x}$  is time limited.

2

What output sequence  $\underline{x}$  results for  $\underline{u} = \underline{1}$  and  $G(D) = 1 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence  $\underline{x}$  is time limited.

3

What output sequence  $\underline{x}$  results for  $\underline{u} = \underline{1}$  and  $G(D) = 1 + D + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence  $\underline{x}$ is finite in time.

4

What is the code sequence  $\underline{x}$  of $\text{ encoder A }$ for the sequence of ones at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$.
The code sequence  $\underline{x}$  contains finitely many ones.

5

What is the code sequence  $\underline{x}$  of $\text{ encoder B }$ for the sequence of ones at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$.
The code sequence $\underline{x}$ contains finitely many ones.

6

Which statements are true for $\text{ encoder B }$?

To $\text{ encoder B }$ belongs the $\text{ diagram 1}$.
To $\text{ encoder B }$ belongs the $\text{ diagram 2}$.
The $\text{ encoder B }$ is catastrophic.


Solution

(1)  Applicable are solutions 2 and 4:

  • The $D$ transform of the code sequence $\underline{x}$ is given by $U(D) = 1/(1+ D)$ to be.
$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
  • Consider $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.


(2)  Because of $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$, solutions 3 and 4 are applicable here:

$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$


(3)  Only the proposed solution 1 is correct:

  • The polynomial division $(1 + D + D^3)$ by $(1 + D)$ is not possible in the binary Galois field without a remainder.
  • You get $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $   ⇒   Output sequence $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$ which extends to infinity.


(4)  Only the proposed solution 1 is correct:

  • The transfer function matrix of $\text{ coder A }$ is:
$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
  • The first code bit in each case is therefore given by the sequence corresponding to subtask (3) and the second bit by the sequence corresponding to subtask (1):
$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm} \underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}= (11,\hspace{0.05cm} 00,\hspace{0.05cm} 01,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.05cm}.$$


(5)  Applicable are suggested solutions 2 and 4:

  • The transfer function of $\text{ coder B }$ is $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.
  • The first code sequence now results according to subtask (2), while $\underline{x}^{(2)}$ still corresponds to subtask (1).
  • Thus we get here $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$   ⇒   Solution suggestion 2.
  • But solution proposition 4 is also correct. Under the assumption made here  $\underline{u} = \underline{1}$  the code sequence $\underline{x}$ contains only five ones.
  • In the next subtask this fact is taken up again.



(6)  Correct are the proposed solutions 2 and 3:

WAs can be seen from state diagram 1, here the information sequence $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$ to the code sequence $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$. This means:

  • To the $\text{ encoder A }$ belongs the state transition diagram 1.
  • To $\text{ encoder B }$ belongs the state transition diagram 2   ⇒   Proposed solution 2.


For the $\text{ encoder B }$, the following statements hold:

  • $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$,
  • $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.


Das bedeutet:

  • With only five bit errors at positions 1, 2, 3, 5, 6, the zero sequence is decoded as a one sequence and vice versa.
  • Such a code is called catastrophic   ⇒   Solution suggestion 3.