Difference between revisions of "Aufgaben:Exercise 4.5Z: Tangent Hyperbolic and Inverse"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder}}
+
{{quiz-Header|Buchseite=Channel_Coding/Soft-in_Soft-Out_Decoder}}
  
[[File:P_ID3025__KC_Z_4_5_v1.png|right|frame|$y = \tanh {(x)}$  als Tabelle]]
+
[[File:P_ID3025__KC_Z_4_5_v1.png|right|frame|$y = \tanh {(x)}$  represented on a table]]
Im&nbsp; [[Channel_Coding/Soft%E2%80%93in_Soft%E2%80%93out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte|Theorieteil]]&nbsp; wurde am Beispiel des&nbsp; <i>Single Parity&ndash;check Codes</i>&nbsp; gezeigt, dass der extrinsische&nbsp; $L$&ndash;Wert bezüglich des&nbsp; $i$&ndash;ten Symbols wie folgt definiert ist:
+
In&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_LLRs|"Theory Part"]]&nbsp; it was shown, using the example of&nbsp; <i>single parity&ndash;check code</i>&nbsp; that the extrinsic&nbsp; $L$ value with respect to the&nbsp; $i$th symbol is defined as follows:
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}
+
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Diese Gleichung ist auch bei vielen anderen Kanalcodes anwendbar. Das Codewort&nbsp; $\underline{x}^{(-i)}$&nbsp; in dieser Definition beinhaltet alle Symbole mit Ausnahme von&nbsp; $x_i$&nbsp; und hat somit nur die Länge&nbsp; $n-1$.
+
This equation is also applicable to many other channel codes. The code word&nbsp; $\underline{x}^{(-i)}$&nbsp; in this definition includes all symbols except&nbsp; $x_i$&nbsp; and thus has length&nbsp; $n-1$ only.
  
In der&nbsp; [[Aufgaben:4.4_Extrinsische_L%E2%80%93Werte_beim_SPC|Aufgabe 4.4]]&nbsp; wurde gezeigt, dass der extrinsische&nbsp; $L$&ndash;Wert auch wie folgt geschrieben werden kann:
+
In the&nbsp; [[Aufgaben:Exercise_4.4:_Extrinsic_L-values_at_SPC|"Exercise 4.4"]]&nbsp; it was shown that the extrinsic&nbsp; $L$ value can also be written as follows:
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm}
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm}
 
{\rm mit} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{n} \hspace{0.15cm}{\rm tanh}(L_j/2)
 
{\rm mit} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{n} \hspace{0.15cm}{\rm tanh}(L_j/2)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In dieser Aufgabe soll nun noch nach einer weiteren Berechnungsmöglichkeit gesucht werden.
+
In this exercise, we will now look for another calculation possibility.
  
  
Line 22: Line 22:
  
  
''Hinweise:''
+
Hints:
* * Die Aufgabe gehört zum Kapitel&nbsp; [[Channel_Coding/Soft%E2%80%93in_Soft%E2%80%93out_Decoder| Soft&ndash;in Soft&ndash;out Decoder]].
+
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder|"Soft&ndash;in Soft&ndash;out Decoder"]].
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Channel_Coding/Soft–in_Soft–out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte|Zur Berechnung der extrinsischen&nbsp; $L$&ndash;Werte]].  
+
*Reference is made in particular to the&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_LLRs|"Calculations of extrinsic LLRs"]] page.  
* Oben sehen Sie eine Tabelle mit den Zahlenwerten der Funktion&nbsp; $y = \tanh(x)$ &nbsp; &#8658; &nbsp; <i>Tangens Hyperbolikus</i>.  
+
* Above you can see a table with the numerical values of the function&nbsp; $y = \tanh(x)$ &nbsp; &#8658; &nbsp; <i>hyperbolic tangent</i>.  
*Mit den rot hinterlegten Zeilen kann man die Werte der inversen Funktion&nbsp; $x = \tanh^{-1}(y)$&nbsp; ablesen, die für die Teilaufgabe '''(5)''' benötigt werden.
+
*With the rows highlighted in red you can read the values of the inverse function&nbsp; $x = \tanh^{-1}(y)$&nbsp; needed for the subtask '''(5)'''.
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Es gelte&nbsp; $\underline{L}_{\rm APP} = (+1.0, +0.4, -1.0)$. Berechnen Sie die extrinsischen&nbsp; $L$&ndash;Werte &nbsp; &#8658; &nbsp; $\underline{L}_E = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3) \big)$&nbsp; nach der zweiten angegebenen Gleichung:
+
{It holds&nbsp; $\underline{L}_{\rm APP} = (+1.0, +0.4, -1.0)$. Calculate the extrinsic&nbsp; $L$ values &nbsp; &#8658; &nbsp; $\underline{L}_E = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3) \big)$&nbsp; according to the second equation given:
 
|type="{}"}
 
|type="{}"}
 
$L_{\rm E}(1) \ = \ ${ -0.188387--0.177413 }
 
$L_{\rm E}(1) \ = \ ${ -0.188387--0.177413 }
Line 39: Line 39:
 
$L_{\rm E}(3) \ = \ ${ 0.1829 3% }
 
$L_{\rm E}(3) \ = \ ${ 0.1829 3% }
  
{Welche der Eigenschaften weist die Funktion&nbsp; $y = \tanh\hspace{-0.05cm}{(x)}$&nbsp; auf?
+
{Which of the properties does the function&nbsp; $y = \tanh\hspace{-0.05cm}{(x)}$&nbsp; exhibit?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $\tanh\hspace{-0.05cm} {(x)} = ({\rm e}^x - {\rm e}^{-x}) \ / \ ({\rm e}^x + {\rm e}^{-x})$.
+
+ $\tanh\hspace{-0.05cm} {(x)} = ({\rm e}^x - {\rm e}^{-x}) \ / \ ({\rm e}^x + {\rm e}^{-x})$ is valid.
+ Es gilt&nbsp; $\tanh\hspace{-0.05cm} {(x)} = (1 - {\rm e}^{-2x}) \ / \ (1 + {\rm e}^{-2x})$.
+
+ $\tanh\hspace{-0.05cm} {(x)} = (1 - {\rm e}^{-2x}) \ / \ (1 + {\rm e}^{-2x})$ is valid.
+ Die Funktion&nbsp; $y = \tanh\hspace{-0.05cm} {(x)}$&nbsp; ist für alle&nbsp; $x$&ndash;Werte definiert.
+
+ The function&nbsp; $y = \tanh\hspace{-0.05cm} {(x)}$&nbsp; is defined for all&nbsp; $x$ values.
- Es gilt&nbsp; $y_{\rm min} = 0$ &nbsp;und&nbsp; $y_{\rm max} &#8594; &#8734;$
+
- $y_{\rm min} = 0$&nbsp;and&nbsp; $y_{\rm max} &#8594; &#8734;$ is valid.
+ Es gilt&nbsp; $y_{\rm min} = -1$ &nbsp;und&nbsp; $y_{\rm max} = +1$.
+
+ $y_{\rm min} = -1$ &nbsp;and&nbsp; $y_{\rm max} = +1$ is valid.
  
{Welche Eigenschaften weist die inverse Funktion&nbsp; $x = \tanh^{-1}\hspace{-0.08cm} {(y)}$&nbsp; auf?
+
{What are the properties of the inverse function&nbsp; $x = \tanh^{-1}\hspace{-0.08cm} {(y)}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Die Funktion&nbsp; $x = \tanh^{-1}\hspace{-0.05cm} (y)$&nbsp; ist für alle&nbsp; $y$&ndash;Werte definiert.
+
- The function&nbsp; $x = \tanh^{-1}\hspace{-0.05cm} (y)$&nbsp; is defined for all&nbsp; $y$ values.
+ Es gilt&nbsp; $x = \tanh^{-1}\hspace{-0.08cm} {(y)} = 1/2 \cdot \ln {[(1 + y) \ / \ (1 - y)]}$.
+
+ $x = \tanh^{-1}\hspace{-0.08cm} {(y)} = 1/2 \cdot \ln {[(1 + y) \ / \ (1 - y)]}$ is valid.
- Es gilt&nbsp; $x_{\rm min} = -1$ &nbsp;und&nbsp; $x_{\rm max} = +1$.
+
- $x_{\rm min} = -1$ &nbsp;and&nbsp; $x_{\rm max} = +1$.
+ Es gilt&nbsp; $x_{\rm min} &#8594; -&#8734;$ &nbsp;und&nbsp; $x_{\rm max} &#8594; +&#8734;$.
+
+ $x_{\rm min} &#8594; -&#8734;$ &nbsp;and&nbsp; $x_{\rm max} &#8594; +&#8734;$ is valid.
  
{Wie lässt sich&nbsp; $L_{\rm E}(i)$&nbsp; auch darstellen? Es sei&nbsp; $\pi$&nbsp; wie auf der Angabenseite definiert.
+
{How can&nbsp; $L_{\rm E}(i)$&nbsp; also be represented? Let&nbsp; $\pi$&nbsp; be defined as on the specification page.
 
|type="[]"}
 
|type="[]"}
- Es gilt&nbsp; $L_{\rm E}(i) = \tanh^{-1}\hspace{-0.08cm} {(\pi)}$.
+
- $L_{\rm E}(i) = \tanh^{-1}\hspace{-0.08cm} {(\pi)}$ is valid.
+ Es gilt&nbsp; $L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.08cm} {(\pi)}$.
+
+ $L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.08cm} {(\pi)}$ is valid.
- Es gilt&nbsp; $L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.05cm}\big [ {\ln {[(1 + \pi) \ / \ (1 - \pi)]}}\big ]$.
+
- $L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.05cm}\big [ {\ln {[(1 + \pi) \ / \ (1 - \pi)]}}\big ]$ is valid.
  
{Berechnen Sie die extrinsischen&nbsp; $L$&ndash;Werte mit der Gleichung gemäß Aufgabe '''(4)'''. Verwenden Sie hierzu die Tabelle auf der Angabenseite.
+
{Calculate the extrinsic&nbsp; $L$ values using the equation given in exercise '''(4)'''. Use the table on the information page for this purpose.
 
|type="{}"}
 
|type="{}"}
 
$L_{\rm E}(1) \ = \ ${ -0.18849--0.17751 }
 
$L_{\rm E}(1) \ = \ ${ -0.18849--0.17751 }
Line 67: Line 67:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Entsprechend der Angabe gilt:
+
'''(1)'''&nbsp; According to the specification applies:
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm}
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm}
{\rm mit} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{3} \hspace{0.15cm}{\rm tanh}(L_j/2)
+
{\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{3} \hspace{0.15cm}{\rm tanh}(L_j/2)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Aus der Tabelle auf der Angabenseite kann abgelesen werden:
+
From the table on the specification page can be read:
 
:$$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$
 
:$$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$
 
:$$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$
 
:$$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$
  
Da der Tangens Hyperbolikus eine ungerade Funktion ist, gilt weiter
+
Since the hyperbolic tangent is an odd function, the following applies further
 
:$$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$
 
:$$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$
  
* Berechnung von $L_{\rm E}(1)$:
+
* Calculation of $L_{\rm E}(1)$:
 
:$$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912\hspace{0.3cm}
 
:$$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} L_{\rm E}(1) = {\rm ln} \hspace{0.2cm}  \frac{1 -0.0912}{1 +0.0912}\hspace{0.15cm}\underline{=-0.1829}
 
\Rightarrow \hspace{0.3cm} L_{\rm E}(1) = {\rm ln} \hspace{0.2cm}  \frac{1 -0.0912}{1 +0.0912}\hspace{0.15cm}\underline{=-0.1829}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* Berechnung von $L_{\rm E}(2)$:
+
* Calculation of $L_{\rm E}(2)$:
 
:$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135\hspace{0.3cm}
 
:$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} L_{\rm E}(2) = {\rm ln} \hspace{0.2cm}  \frac{1 -0.2135}{1 +0.2135}\hspace{0.15cm}\underline{=-0.4337}
 
\Rightarrow \hspace{0.3cm} L_{\rm E}(2) = {\rm ln} \hspace{0.2cm}  \frac{1 -0.2135}{1 +0.2135}\hspace{0.15cm}\underline{=-0.4337}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* Berechnung von $L_{\rm E}(3)$:
+
* Calculation of $L_{\rm E}(3)$:
 
:$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912\hspace{0.3cm}
 
:$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} L_{\rm E}(3) = {\rm ln} \hspace{0.2cm}  \frac{1 +0.0912}{1 -0.0912}\hspace{0.15cm}\underline{=+0.1829}= - L_{\rm E}(1)  
 
\Rightarrow \hspace{0.3cm} L_{\rm E}(3) = {\rm ln} \hspace{0.2cm}  \frac{1 +0.0912}{1 -0.0912}\hspace{0.15cm}\underline{=+0.1829}= - L_{\rm E}(1)  
Line 98: Line 98:
  
  
'''(2)'''&nbsp; <u>Richtig sind die Lösungsvorschläge 1, 2, 3 und 5</u>:  
+
'''(2)'''&nbsp; <u>The correct solutions are 1, 2, 3, and 5</u>:  
*Die Funktion
+
*The function
:$$y ={\rm tanh}(x) = \frac{{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}
+
:$$y ={\rm tanh}(x) = \frac{\rm e}^{x}-{\rm e}^{-x}}{\rm e}^{x}+{\rm e}^{-x}}
 
  = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$
 
  = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$
  
ist für alle $x$&ndash;Werte berechenbar und es gilt $\tanh(-x) = -\tanh(x)$.  
+
is computable for all $x$ values and $\tanh(-x) = -\tanh(x)$ holds.  
*Für große Werte von $x$ wird ${\rm e}^{-2x}$ sehr klein, so dass man im Grenzfall $x &#8594; &#8734;$ den Grenzwert $y = 1$ erhält.
+
*For large values of $x$, ${\rm e}^{-2x}$ becomes very small, so that in the limiting case $x &#8594; &#8734;$ the limit $y = 1$ is obtained.
  
  
  
'''(3)'''&nbsp; Da der Tangens Hyperbolikus nur Werte zwischen $&plusmn;1$ liefert, ist die Umkehrfunktion $x = \tanh^{-1}(y)$ auch nur für $|y| &#8804; 1$ auswertbar.  
+
'''(3)'''&nbsp; Since the hyperbolic tangent only yields values between $&plusmn;1$, the inverse function $x = \tanh^{-1}(y)$ can also only be evaluated for $|y| &#8804; 1$.  
  
Durch Umstellen der angegebenen Gleichung
+
By rearranging the given equation
 
:$$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$
 
:$$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$
  
erhält man:
+
one obtains:
 
:$${\rm e}^{2x} =  \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$${\rm e}^{2x} =  \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
{\rm e}^{-2x} =  \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
{\rm e}^{-2x} =  \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Line 120: Line 120:
 
{\rm tanh}(x) \hspace{0.05cm}.$$
 
{\rm tanh}(x) \hspace{0.05cm}.$$
  
Das bedeutet:
+
This means:
* Die im Lösungsvorschlag 2 angegebene Gleichung ist richtig.
+
* The equation given in the proposed solution 2 is correct.
* Im Grenzfall $y &#8594; 1$ gilt $x = \tanh^{-1}(y) &#8594; &#8734;$.
+
* In the limiting case $y &#8594; 1$, $x = \tanh^{-1}(y) &#8594; &#8734;$ holds.
* Auch die Umkehrfunktion ist ungerade &nbsp;&#8658;&nbsp; im Grenzfall $y &#8594; -1$ geht $x &#8594; -&#8734;$.
+
* Also the inverse function is odd &nbsp;&#8658;&nbsp; in the limiting case $y &#8594; -1$ goes $x &#8594; -&#8734;$.
  
  
Richtig sind demnach die <u>Lösungsvorschläge 2 und 4</u>.
+
Accordingly, the <u>proposed solutions 2 and 4</u> are correct.
  
  
  
'''(4)'''&nbsp; Ausgehend von der Gleichung
+
'''(4)'''&nbsp; Starting from the equation.
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}$$
 
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}  \frac{1 + \pi}{1 - \pi}$$
  
kommt man mit dem Ergebnis von '''(3)''' zur äquivalenten Gleichung entsprechend dem <u>Lösungsvorschlag 2</u>:
+
one arrives with the result of '''(3)''' at the equivalent equation corresponding to <u>suggested solution 2</u>:
 
:$$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$
 
:$$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$
  
  
  
'''(5)'''&nbsp; Mit dem Ergebnis der Teilaufgabe '''(1)''' erhält man
+
'''(5)'''&nbsp; With the result of the subtask '''(1)''' we get.
* für den ersten extrinsischen $L$&ndash;Wert, da $\pi_1 = -0.0912$:
+
* for the first extrinsic $L$ value, since $\pi_1 = -0.0912$:
 
:$$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912)
 
:$$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912)
 
= -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830}
 
= -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* für den zweiten extrinsischen $L$&ndash;Wert, da $\pi_2 = -0.2135$:
+
* for the second extrinsic $L$ value, since $\pi_2 = -0.2135$:
 
:$$L_{\rm E}(2) =  -2 \cdot {\rm tanh}^{-1}(0.2135)
 
:$$L_{\rm E}(2) =  -2 \cdot {\rm tanh}^{-1}(0.2135)
 
= -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336}
 
= -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* für den dritten extrinsischen $L$&ndash;Wert, da $\pi_3 = +0.0912 = -\pi_1$:
+
* for the third extrinsic $L$ value, since $\pi_3 = +0.0912 = -\pi_1$:
 
:$$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830}
 
:$$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Das Ergebnis wurde mit Hilfe der roten Tabelleneinträge auf der Angabenseite ermittelt und stimmt bis auf Rundungsfehler (Multiplikation/Division durch $2$) mit den Ergebnissen der Teilaufgabe '''(1)''' überein.
+
The result was determined using the red table entries on the information page and, except for rounding errors (multiplication/division by $2$), agrees with the results of subtask '''(1)'''.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Channel Coding: Exercises|^4.1 Soft–in Soft–out Decoder^]]
 
[[Category:Channel Coding: Exercises|^4.1 Soft–in Soft–out Decoder^]]

Revision as of 00:18, 31 October 2022

$y = \tanh {(x)}$  represented on a table

In  "Theory Part"  it was shown, using the example of  single parity–check code  that the extrinsic  $L$ value with respect to the  $i$th symbol is defined as follows:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} \hspace{0.05cm}.$$

This equation is also applicable to many other channel codes. The code word  $\underline{x}^{(-i)}$  in this definition includes all symbols except  $x_i$  and thus has length  $n-1$ only.

In the  "Exercise 4.4"  it was shown that the extrinsic  $L$ value can also be written as follows:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} {\rm mit} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{n} \hspace{0.15cm}{\rm tanh}(L_j/2) \hspace{0.05cm}.$$

In this exercise, we will now look for another calculation possibility.





Hints:

  • This exercise belongs to the chapter  "Soft–in Soft–out Decoder".
  • Reference is made in particular to the  "Calculations of extrinsic LLRs" page.
  • Above you can see a table with the numerical values of the function  $y = \tanh(x)$   ⇒   hyperbolic tangent.
  • With the rows highlighted in red you can read the values of the inverse function  $x = \tanh^{-1}(y)$  needed for the subtask (5).



Questions

1

It holds  $\underline{L}_{\rm APP} = (+1.0, +0.4, -1.0)$. Calculate the extrinsic  $L$ values   ⇒   $\underline{L}_E = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3) \big)$  according to the second equation given:

$L_{\rm E}(1) \ = \ $

$L_{\rm E}(2) \ = \ $

$L_{\rm E}(3) \ = \ $

2

Which of the properties does the function  $y = \tanh\hspace{-0.05cm}{(x)}$  exhibit?

$\tanh\hspace{-0.05cm} {(x)} = ({\rm e}^x - {\rm e}^{-x}) \ / \ ({\rm e}^x + {\rm e}^{-x})$ is valid.
$\tanh\hspace{-0.05cm} {(x)} = (1 - {\rm e}^{-2x}) \ / \ (1 + {\rm e}^{-2x})$ is valid.
The function  $y = \tanh\hspace{-0.05cm} {(x)}$  is defined for all  $x$ values.
$y_{\rm min} = 0$ and  $y_{\rm max} → ∞$ is valid.
$y_{\rm min} = -1$  and  $y_{\rm max} = +1$ is valid.

3

What are the properties of the inverse function  $x = \tanh^{-1}\hspace{-0.08cm} {(y)}$ ?

The function  $x = \tanh^{-1}\hspace{-0.05cm} (y)$  is defined for all  $y$ values.
$x = \tanh^{-1}\hspace{-0.08cm} {(y)} = 1/2 \cdot \ln {[(1 + y) \ / \ (1 - y)]}$ is valid.
$x_{\rm min} = -1$  and  $x_{\rm max} = +1$.
$x_{\rm min} → -∞$  and  $x_{\rm max} → +∞$ is valid.

4

How can  $L_{\rm E}(i)$  also be represented? Let  $\pi$  be defined as on the specification page.

$L_{\rm E}(i) = \tanh^{-1}\hspace{-0.08cm} {(\pi)}$ is valid.
$L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.08cm} {(\pi)}$ is valid.
$L_{\rm E}(i) = 2 \cdot \tanh^{-1}\hspace{-0.05cm}\big [ {\ln {[(1 + \pi) \ / \ (1 - \pi)]}}\big ]$ is valid.

5

Calculate the extrinsic  $L$ values using the equation given in exercise (4). Use the table on the information page for this purpose.

$L_{\rm E}(1) \ = \ $

$L_{\rm E}(2) \ = \ $

$L_{\rm E}(3) \ = \ $


Solution

(1)  According to the specification applies:

$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}\hspace{0.05cm}, \hspace{0.3cm} {\rm with} \hspace{0.3cm} \pi = \prod\limits_{j \ne i}^{3} \hspace{0.15cm}{\rm tanh}(L_j/2) \hspace{0.05cm}.$$

From the table on the specification page can be read:

$$\tanh {(L_1/2)} = \tanh {(0.5)} = 0.4621,$$
$$\tanh {(L_2/2)} = \tanh {(0.2)} = 0.1974.$$

Since the hyperbolic tangent is an odd function, the following applies further

$$\tanh {(L_3/2)} = -\tanh {(0.5)} = -0.4621.$$
  • Calculation of $L_{\rm E}(1)$:
$$\pi = {\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) = (+0.1974) \cdot (-0.4621) = - 0.0912\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(1) = {\rm ln} \hspace{0.2cm} \frac{1 -0.0912}{1 +0.0912}\hspace{0.15cm}\underline{=-0.1829} \hspace{0.05cm}.$$
  • Calculation of $L_{\rm E}(2)$:
$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) = (+0.4621) \cdot (-0.4621) = - 0.2135\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(2) = {\rm ln} \hspace{0.2cm} \frac{1 -0.2135}{1 +0.2135}\hspace{0.15cm}\underline{=-0.4337} \hspace{0.05cm}.$$
  • Calculation of $L_{\rm E}(3)$:
$$\pi = {\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) = (+0.4621) \cdot (+0.1974) = + 0.0912\hspace{0.3cm} \Rightarrow \hspace{0.3cm} L_{\rm E}(3) = {\rm ln} \hspace{0.2cm} \frac{1 +0.0912}{1 -0.0912}\hspace{0.15cm}\underline{=+0.1829}= - L_{\rm E}(1) \hspace{0.05cm}.$$


(2)  The correct solutions are 1, 2, 3, and 5:

  • The function
$$y ={\rm tanh}(x) = \frac{\rm e}^{x}-{\rm e}^{-x}}{\rm e}^{x}+{\rm e}^{-x}} = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}}$$

is computable for all $x$ values and $\tanh(-x) = -\tanh(x)$ holds.

  • For large values of $x$, ${\rm e}^{-2x}$ becomes very small, so that in the limiting case $x → ∞$ the limit $y = 1$ is obtained.


(3)  Since the hyperbolic tangent only yields values between $±1$, the inverse function $x = \tanh^{-1}(y)$ can also only be evaluated for $|y| ≤ 1$.

By rearranging the given equation

$$x ={\rm tanh}^{-1}(y) = 1/2 \cdot {\rm ln} \hspace{0.2cm} \frac{1+y}{1-y}$$

one obtains:

$${\rm e}^{2x} = \frac{1+y}{1-y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm e}^{-2x} = \frac{1-y}{1+y} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} (1+y) \cdot {\rm e}^{-2x} = 1-y \hspace{0.3cm} \Rightarrow \hspace{0.3cm}y = \frac{1-{\rm e}^{-2x}}{1+{\rm e}^{-2x}} = {\rm tanh}(x) \hspace{0.05cm}.$$

This means:

  • The equation given in the proposed solution 2 is correct.
  • In the limiting case $y → 1$, $x = \tanh^{-1}(y) → ∞$ holds.
  • Also the inverse function is odd  ⇒  in the limiting case $y → -1$ goes $x → -∞$.


Accordingly, the proposed solutions 2 and 4 are correct.


(4)  Starting from the equation.

$$L_{\rm E}(i) = {\rm ln} \hspace{0.2cm} \frac{1 + \pi}{1 - \pi}$$

one arrives with the result of (3) at the equivalent equation corresponding to suggested solution 2:

$$L_{\rm E}(i) = 2 \cdot {\rm tanh}^{-1}(\pi)\hspace{0.05cm}.$$


(5)  With the result of the subtask (1) we get.

  • for the first extrinsic $L$ value, since $\pi_1 = -0.0912$:
$$L_{\rm E}(1) = 2 \cdot {\rm tanh}^{-1}(-0.0912)= -2 \cdot {\rm tanh}^{-1}(0.0912) = -2 \cdot 0.0915\hspace{0.15cm}\underline{=-0.1830} \hspace{0.05cm}.$$
  • for the second extrinsic $L$ value, since $\pi_2 = -0.2135$:
$$L_{\rm E}(2) = -2 \cdot {\rm tanh}^{-1}(0.2135) = -2 \cdot 0.2168\hspace{0.15cm}\underline{=-0.4336} \hspace{0.05cm}.$$
  • for the third extrinsic $L$ value, since $\pi_3 = +0.0912 = -\pi_1$:
$$L_{\rm E}(3) = -L_{\rm E}(1) \hspace{0.15cm}\underline{=+0.1830} \hspace{0.05cm}.$$

The result was determined using the red table entries on the information page and, except for rounding errors (multiplication/division by $2$), agrees with the results of subtask (1).