Difference between revisions of "Aufgaben:Exercise 4.08: Repetition to the Convolutional Codes"

From LNTwww
Line 11: Line 11:
 
#[[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance|"Definition of the free distance"]]
 
#[[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance|"Definition of the free distance"]]
 
#[[Channel_Coding/Algebraic_and_Polynomial_Description#GF.282.29_description_forms_of_a_digital_filter|"GF(2) description forms of a digital filter"]]
 
#[[Channel_Coding/Algebraic_and_Polynomial_Description#GF.282.29_description_forms_of_a_digital_filter|"GF(2) description forms of a digital filter"]]
#[[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D.E2.80.93transform_to_rate_.7F.27.22.60UNIQ-MathJax160-QINU.60.22.27.7F_convolution_encoders| "Application of $D$–transformation to rate 1/n convolutional codes."]]
+
#[[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D.E2.80.93transform_to_rate_.7F.27.22.60UNIQ-MathJax160-QINU.60.22.27.7F_convolution_encoders| "Application of $D$–transform to rate 1/n convolutional codes."]]
  
  
 
In the state transition diagram, the state  $S_0$  is always assumed. Two arrows go from each state. The label is "$u_i \hspace{0.05cm}|\hspace{0.05cm} x_i^{(1)}x_i^{(2)}$". For a systematic code, this holds:
 
In the state transition diagram, the state  $S_0$  is always assumed. Two arrows go from each state. The label is "$u_i \hspace{0.05cm}|\hspace{0.05cm} x_i^{(1)}x_i^{(2)}$". For a systematic code, this holds:
* Das erste Codebit ist identisch mit dem Informationsbit:   $\ x_i^{(1)} = u_i ∈ \{0, \, 1\}$
+
* The first code bit is identical to the information bit:   $\ x_i^{(1)} = u_i ∈ \{0, \, 1\}$
* Das zweite Codebit ist das Prüfbit (Paritybit):   $\ x_i^{(2)} = p_i ∈ \{0, \, 1\}$.
+
* The second code bit is the check bit (parity bit):   $\ x_i^{(2)} = p_i ∈ \{0, \, 1\}$.
  
  
Line 24: Line 24:
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe bezieht sich auf das Kapitel  [[Channel_Coding/Grundlegendes_zu_den_Turbocodes| Grundlegendes zu den Turbocodes]].  
+
* The exercise refers to the chapter  [[Channel_Coding/The_Basics_of_Turbo_Codes| "Basics of Turbo Codes"]].  
* In den Fragen zu dieser Aufgabe werden folgende semi–infinite Vektoren verwendet:
+
* The following semi–infinite vectors are used in the questions for this exercise:
:* Informationssequenz  $\ \underline{u} = (u_1, \, u_2, \text{ ...})$,
+
:* information sequence  $\ \underline{u} = (u_1, \, u_2, \text{ ...})$,
:* Paritysequenz  $\ \underline{p} = (p_1, \, p_2, \text{ ...})$,
+
:* parity sequence  $\ \underline{p} = (p_1, \, p_2, \text{ ...})$,
:* Impulsantwort  $\ \underline{g} = (g_1, \, g_2, \text{ ...})$; diese ist gleich der Paritysequenz  $\underline{p}$  für  $\underline{u} = (1, \, 0, \, 0, \text{ ...})$.
+
:* impulse response  $\ \underline{g} = (g_1, \, g_2, \text{ ...})$; this is equal to the parity sequence  $\underline{p}$  for  $\underline{u} = (1, \, 0, \, 0, \text{ ...})$.
  
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Impulsantwort&nbsp; $\underline{g}&nbsp;$?
+
{What is the impulse response&nbsp; $\underline{g}&nbsp;$?
 
|type="()"}
 
|type="()"}
- Es gilt&nbsp; $\underline{g} = (1, \, 1, \,1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{ ...})$.
+
- $\underline{g} = (1, \, 1, \,1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{ ...})$ holds.
+ Es gilt&nbsp; $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{ ...})$.
+
+ $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{ ...})$ holds.
  
{Es sei nun&nbsp; $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$&nbsp; mit&nbsp; $u_7 &#8712; \{0, \, 1\}$. Welche Aussagen treffen für die Paritysequenz&nbsp; $\underline{p}$&nbsp; zu?
+
{Now let&nbsp; $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$&nbsp; with&nbsp; $u_7 &#8712; \{0, \, 1\}$. Which statements are true for the parity sequence&nbsp; $\underline{p}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die ersten sechs Bit der Paritysequenz sind&nbsp; "$1, \, 0, \, 1, \, 1, \, 0, \, 1$".
+
+ The first six bits of the parity sequence are&nbsp; "$1, \, 0, \, 1, \, 1, \, 0, \, 1$".
+ Mit&nbsp; $u_7 = 0$&nbsp; gilt&nbsp; $p_i = 0$&nbsp; für $i > 6$.
+
+ With&nbsp; $u_7 = 0$&nbsp; holds&nbsp; $p_i = 0$&nbsp; for $i > 6$.
- Mit&nbsp; $u_7 = 1$&nbsp; gilt&nbsp; $p_i = 0$&nbsp; für $i > 8$.
+
- With&nbsp; $u_7 = 1$&nbsp; holds&nbsp; $p_i = 0$&nbsp; for $i > 8$.
  
{Wie lautet die&nbsp; $D$&ndash;Übertragungsfunktionsmatrix&nbsp; $\mathbf{G}(D)$?
+
{What is the&nbsp; $D$&ndash;transfer function matrix&nbsp; $\mathbf{G}(D)$?
 
|type="()"}
 
|type="()"}
- Es gilt&nbsp; $\mathbf{G}(D) = \big [1, \ 1 + D \big ]$.
+
- It holds&nbsp; $\mathbf{G}(D) = \big [1, \ 1 + D \big ]$.
+ Es gilt&nbsp; $\mathbf{G}(D) = \big [1, \ 1 + D^2 \big ]$.
+
+ It holds&nbsp; $\mathbf{G}(D) = \big [1, \ 1 + D^2 \big ]$.
- Es gilt&nbsp; $\mathbf{G}(D) = \big [1 + D^2 \big ]$.
+
- It holds&nbsp; $\mathbf{G}(D) = \big [1 + D^2 \big ]$.
  
{Betrachten Sie nun die begrenzte Eingangsfolge&nbsp; $\underline{u} = (1, \, 0, \, 1, \, 0, \, 0, \, 1)$. Welche Aussagen gelten für die dann ebenfalls begrenzte Parityfolge&nbsp; $\underline{p}$?
+
{Now consider the bounded input sequence&nbsp; $\underline{u} = (1, \, 0, \, 1, \, 0, \, 0, \, 1)$. Which statements hold for the then also bounded parity sequence&nbsp; $\underline{p}$?
 
|type="[]"}
 
|type="[]"}
- Die ersten acht Bit der Parityfolge sind&nbsp; "$1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0$".
+
- The first eight bits of the parity sequence are&nbsp; "$1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0$."
+ Die ersten acht Bit der Parityfolge sind&nbsp; "$1, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1$".
+
+ The first eight bits of the parity sequence are&nbsp; "$1, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1$".
+ Es gilt&nbsp; $p_i = 0$&nbsp; für &nbsp;$i &#8805; 9$.
+
+ It holds&nbsp; $p_i = 0$&nbsp; for &nbsp;$i &#8805; 9$.
  
{Wie groß ist die freie Distanz&nbsp; $d_{\rm F}$&nbsp; des betrachteten Faltungsodes?
+
{What is the free distance&nbsp; $d_{\rm F}$&nbsp; of the considered convolutional code?
 
|type="{}"}
 
|type="{}"}
 
$d_{\rm F} \ = \ ${ 3 3% }
 
$d_{\rm F} \ = \ ${ 3 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; Correct is the <u>proposed solution 2</u>:
*Die Impulsantwort $\underline{g}$ ist gleich der Ausgangsfolge $\underline{p}$ für die Eingangsfolge $\underline{u} = (1, \, 0, \, 0, \, 0, \text{ ...})$.  
+
*The impulse response $\underline{g}$ is equal to the output sequence $\underline{p}$ for the input sequence $\underline{u} = (1, \, 0, \, 0, \, 0, \text{ ...})$.  
*Ausgehend vom Zustand $S_0$ ergeben sich im Zustandsübergangsdiagramm folgende Übergänge:
+
*Based on the state $S_0$, the state transition diagram results in the following transitions:
:$$S_0 &#8594; S_1 &#8594; S_2 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; \text{ ...} \hspace{0.6cm} \Rightarrow \hspace{0.5cm} {\rm Impulsantwort} \text{:} \hspace{0.2cm} \underline{g} = (1, \, 0, \, 1, \, 0, \, 0) \, .$$
+
:$$S_0 &#8594; S_1 &#8594; S_2 &#8594; S_0 &#8594; S_0 &#8594; S_0 &#8594; \text{ ...} \hspace{0.6cm} \Rightarrow \hspace{0.5cm} {\rm impulse\:response} \text{:} \hspace{0.2cm} \underline{g} = (1, \, 0, \, 1, \, 0, \, 0) \, .$$
*Für ein nichtrekursives Filter mit Gedächtnis $m$ gilt $g_i &equiv; 0$ für $i > m$. In unserem Beispiel ist $m = 2$.  
+
*For a non-recursive filter with memory $m$, $g_i &equiv; 0$ holds for $i > m$. In our example, $m = 2$.  
*Der Lösungsvorschlag 1 gilt dagegen für das rekursive Filter (RSC) entsprechend der [[Aufgaben:4.09_Wiederholung_zu_den_RSC-Codes| Aufgabe 4.9]].
+
*In contrast, the proposed solution 1 applies to the recursive filter (RSC) corresponding to [[Aufgaben:Exercise_4.09:_Recursive_Systematic_Convolutional_Codes| "Exercise 4.9"]].
  
  
  
'''(2)'''&nbsp; Es sei $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$ und $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$. Dann gilt für die Paritysequenz aufgrund der Linearität:
+
'''(2)'''&nbsp; Let $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$ and $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$. Then the following holds for the parity sequence due to linearity:
 
:$$\underline{p} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
:$$\underline{p} \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
(\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \hspace{0.05cm} 0,\hspace{0.05cm} u_7\hspace{0.05cm} )  
 
(\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \hspace{0.05cm} 0,\hspace{0.05cm} u_7\hspace{0.05cm} )  
Line 84: Line 84:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig sind also die <u>Lösungsvorschläge 1 und 2</u> im Gegensatz zur Antwort 3:  
+
Correct are therefore the <u>proposed solutions 1 and 2</u> in contrast to the answer 3:  
*Für $u_7 = 1$ gilt $p_7 = 1, \ p_8 = 0, \ p_9 = 1$ und $p_i &equiv; 0$ für $i > 9$.
+
*For $u_7 = 1$ gilt $p_7 = 1, \ p_8 = 0, \ p_9 = 1$ and $p_i &equiv; 0$ for $i > 9$.
  
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(3)'''&nbsp; Correct is the <u>proposed solution 2</u>:
*Aus dem Zustandsübergangsdiagramm erkennt man die Codeparameter $k = 1$ und $n = 2$.  
+
*From the state transition diagram one can see the code parameters $k = 1$ and $n = 2$.  
*Das heißt: Die Übertragungsfunktionsmatrix $\mathbf{G}(D)$ besteht aus zwei Elementen &nbsp; &#8658; &nbsp; der Vorschlag 3 ist falsch.
+
*This means: the transfer function matrix $\mathbf{G}(D)$ consists of two elements &nbsp; &#8658; &nbsp; the proposition 3 is wrong.
* Die erste Komponente von $\mathbf{G}(D)$ ist tatsächlich 1, da ein systematischer Code vorliegt: $\ \underline{x}^{(1)} &equiv; \underline{z}$.
+
* The first component of $\mathbf{G}(D)$ is actually 1, since there is a systematic code: $\ \underline{x}^{(1)} &equiv; \underline{z}$.
* Die zweite Komponente von $\mathbf{G}(D)$ ist gleich der $D$&ndash;Transformierten der Impulsantwort $\underline{g}$, wobei die Dummy&ndash;Variable $D$ eine Verzögerung um ein Bit angibt:
+
* The second component of $\mathbf{G}(D)$ is equal to the $D$&ndash;transform of the impulse response $\underline{g}$, where the dummy&ndash;variable $D$ indicates a delay of one bit:
 
:$$\underline{g}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{ ...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad
 
:$$\underline{g}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{ ...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad
 
G^{(2)}(D) =  1+  D^2\hspace{0.05cm}. $$
 
G^{(2)}(D) =  1+  D^2\hspace{0.05cm}. $$
  
  
Über die Fragestellung hinausgehend betrachten wir hier auch noch die vorliegende Filterstruktur:
+
Going beyond the question, we also consider here the filter structure at hand:
  
[[File:P_ID3038__KC_A_4_8c_v1.png|center|frame|Drei Beispiele für Rate–1/2–Faltungscodierer]]
+
[[File:P_ID3038__KC_A_4_8c_v1.png|center|frame|Three examples of rate 1/2 convolutional encoders]]
  
In der Grafik ist der hier betrachtete Coder als Coder $\rm A$ links dargestellt.  
+
In the diagram, the encoder considered here is shown as coder $\rm A$ on the left.  
* Dieser ist ebenso wie der Coder $\rm B$ systematisch, und
+
* This is systematic like the encoder $\rm B$, and
* basiert im Gegensatz zu Coder $\rm B$ aber auf einem nichtrekursiven Filter.
+
* but, unlike coder $\rm B$, is based on a non-recursive filter.
*Der Coder $\rm C$ hat ebenfalls eine nichtrekursive Struktur, ist aber nicht systematisch.  
+
*The coder $\rm C$ also has a nonrecursive structure, but is not systematic.  
*Die äquivalente systematische Repräsentation von Coder $\rm C$ ist der Coder $\rm B$.
+
*The equivalent systematic representation of encoder $\rm C$ is encoder $\rm B$.
  
  
  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(4)'''&nbsp; Correct are the <u>proposed solutions 2 and 3</u>:
*Die Aufgabe könnte in gleicher Weise gelöst werden wie die Teilaufgabe (2).  
+
*The exercise could be solved in the same way as subtask (2).  
*Wir wählen hier aber zur Abwechslung den Weg über die $D$&ndash;Transformation:
+
*However, we choose here for a change the way about the $D$&ndash;transform:
 
:$$\underline{u}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad
 
:$$\underline{u}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad
 
U(D) =  1+  D^2 + D^5$$
 
U(D) =  1+  D^2 + D^5$$

Revision as of 19:36, 26 November 2022

State transition diagram of a non-recursive code

The turbo codes are based on convolutional codes, which are discussed in detail in the chapter  "Basics of Convolutional Coding" .

Starting from the adjacent state transition diagram, essential properties and characteristics of the considered rate $1/2$ convolutional code shall be determined, and we explicitly refer to the following theory pages:

  1. "Systematic convolutional codes"
  2. "Representation in the state transition diagram"
  3. "Definition of the free distance"
  4. "GF(2) description forms of a digital filter"
  5. "Application of $D$–transform to rate 1/n convolutional codes."


In the state transition diagram, the state  $S_0$  is always assumed. Two arrows go from each state. The label is "$u_i \hspace{0.05cm}|\hspace{0.05cm} x_i^{(1)}x_i^{(2)}$". For a systematic code, this holds:

  • The first code bit is identical to the information bit:   $\ x_i^{(1)} = u_i ∈ \{0, \, 1\}$
  • The second code bit is the check bit (parity bit):   $\ x_i^{(2)} = p_i ∈ \{0, \, 1\}$.




Hints:

  • The exercise refers to the chapter  "Basics of Turbo Codes".
  • The following semi–infinite vectors are used in the questions for this exercise:
  • information sequence  $\ \underline{u} = (u_1, \, u_2, \text{ ...})$,
  • parity sequence  $\ \underline{p} = (p_1, \, p_2, \text{ ...})$,
  • impulse response  $\ \underline{g} = (g_1, \, g_2, \text{ ...})$; this is equal to the parity sequence  $\underline{p}$  for  $\underline{u} = (1, \, 0, \, 0, \text{ ...})$.



Questions

1

What is the impulse response  $\underline{g} $?

$\underline{g} = (1, \, 1, \,1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{ ...})$ holds.
$\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{ ...})$ holds.

2

Now let  $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$  with  $u_7 ∈ \{0, \, 1\}$. Which statements are true for the parity sequence  $\underline{p}$ ?

The first six bits of the parity sequence are  "$1, \, 0, \, 1, \, 1, \, 0, \, 1$".
With  $u_7 = 0$  holds  $p_i = 0$  for $i > 6$.
With  $u_7 = 1$  holds  $p_i = 0$  for $i > 8$.

3

What is the  $D$–transfer function matrix  $\mathbf{G}(D)$?

It holds  $\mathbf{G}(D) = \big [1, \ 1 + D \big ]$.
It holds  $\mathbf{G}(D) = \big [1, \ 1 + D^2 \big ]$.
It holds  $\mathbf{G}(D) = \big [1 + D^2 \big ]$.

4

Now consider the bounded input sequence  $\underline{u} = (1, \, 0, \, 1, \, 0, \, 0, \, 1)$. Which statements hold for the then also bounded parity sequence  $\underline{p}$?

The first eight bits of the parity sequence are  "$1, \, 0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0$."
The first eight bits of the parity sequence are  "$1, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1$".
It holds  $p_i = 0$  for  $i ≥ 9$.

5

What is the free distance  $d_{\rm F}$  of the considered convolutional code?

$d_{\rm F} \ = \ $


Solution

(1)  Correct is the proposed solution 2:

  • The impulse response $\underline{g}$ is equal to the output sequence $\underline{p}$ for the input sequence $\underline{u} = (1, \, 0, \, 0, \, 0, \text{ ...})$.
  • Based on the state $S_0$, the state transition diagram results in the following transitions:
$$S_0 → S_1 → S_2 → S_0 → S_0 → S_0 → \text{ ...} \hspace{0.6cm} \Rightarrow \hspace{0.5cm} {\rm impulse\:response} \text{:} \hspace{0.2cm} \underline{g} = (1, \, 0, \, 1, \, 0, \, 0) \, .$$
  • For a non-recursive filter with memory $m$, $g_i ≡ 0$ holds for $i > m$. In our example, $m = 2$.
  • In contrast, the proposed solution 1 applies to the recursive filter (RSC) corresponding to "Exercise 4.9".


(2)  Let $\underline{u} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, u_7)$ and $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, ...)$. Then the following holds for the parity sequence due to linearity:

$$\underline{p} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0, \hspace{0.05cm} 0,\hspace{0.05cm} u_7\hspace{0.05cm} ) * (\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0 ,\hspace{0.05cm} 0,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{ ...})= $$
$$\ = \ \hspace{-0.15cm} (\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}0, \hspace{0.05cm} \text{ ...} \hspace{0.05cm})\hspace{0.05cm}\oplus (\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}0, \hspace{0.05cm} \text{ ...}\hspace{0.05cm})\hspace{0.05cm}\oplus (\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm}0,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} u_7,\hspace{0.05cm} 0,\hspace{0.05cm}u_7, \hspace{0.05cm} \text{ ...} \hspace{0.05cm}) $$
$$\Rightarrow \hspace{0.3cm}\underline{p} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}0,\hspace{0.05cm}1,\hspace{0.05cm}\hspace{0.05cm}1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} u_7,\hspace{0.05cm} 0,\hspace{0.05cm}u_7, \hspace{0.05cm} \text{ ...} \hspace{0.05cm}) \hspace{0.05cm}.$$

Correct are therefore the proposed solutions 1 and 2 in contrast to the answer 3:

  • For $u_7 = 1$ gilt $p_7 = 1, \ p_8 = 0, \ p_9 = 1$ and $p_i ≡ 0$ for $i > 9$.


(3)  Correct is the proposed solution 2:

  • From the state transition diagram one can see the code parameters $k = 1$ and $n = 2$.
  • This means: the transfer function matrix $\mathbf{G}(D)$ consists of two elements   ⇒   the proposition 3 is wrong.
  • The first component of $\mathbf{G}(D)$ is actually 1, since there is a systematic code: $\ \underline{x}^{(1)} ≡ \underline{z}$.
  • The second component of $\mathbf{G}(D)$ is equal to the $D$–transform of the impulse response $\underline{g}$, where the dummy–variable $D$ indicates a delay of one bit:
$$\underline{g}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{ ...}\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G^{(2)}(D) = 1+ D^2\hspace{0.05cm}. $$


Going beyond the question, we also consider here the filter structure at hand:

Three examples of rate 1/2 convolutional encoders

In the diagram, the encoder considered here is shown as coder $\rm A$ on the left.

  • This is systematic like the encoder $\rm B$, and
  • but, unlike coder $\rm B$, is based on a non-recursive filter.
  • The coder $\rm C$ also has a nonrecursive structure, but is not systematic.
  • The equivalent systematic representation of encoder $\rm C$ is encoder $\rm B$.


(4)  Correct are the proposed solutions 2 and 3:

  • The exercise could be solved in the same way as subtask (2).
  • However, we choose here for a change the way about the $D$–transform:
$$\underline{u}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = 1+ D^2 + D^5$$
$$\Rightarrow \hspace{0.3cm} P(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} U(D) \cdot G(D) = (1+ D^2 + D^5) \cdot (1+ D^2 ) =1+ D^2 + D^5 + D^2 + D^4 + D^7 = 1+ D^4 + D^5 + D^7$$
$$\Rightarrow \hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})\hspace{0.05cm}.$$


(5)  Die freie Distanz $d_{\rm F}$ eines Faltungscoders ist gleich der Anzahl der Bits, durch die sich zwei beliebigen Sequenzen dieses Codes mindestens unterscheiden.

  • Gehen wir wie allgemein üblich als Bezugsgröße von der Nullsequenz  $\underline{0} \ \Rightarrow \ S_0 → S_0 → S_0 → S_0 → \ \text{ ...} \ $  aus, so ergibt sich $d_{\rm F}$ gleichzeitig als das minimale Hamming–Gewicht (Anzahl der Einsen) einer zulässigen Codesequenz  $\underline{x} ≠ \underline{0}$.
  • Aus dem Zustandsübergangsdiagramm erkennt man, dass die freie Distanz zum Beispiel durch den Pfad
$$ S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \text{ ...}$$
gekennzeichnet ist, also durch die Codesequenz $00 \hspace{0.1cm} 11 \hspace{0.1cm} 00 \hspace{0.1cm} 01 \hspace{0.1cm} 00 \text{ ...} \ .$
  • Dementsprechend gilt für die freie Distanz dieses nichtrekursiven Codes: $\hspace{0.2cm} d_{\rm F} \ \underline{= 3}$.