Difference between revisions of "Aufgaben:Exercise 4.09: Recursive Systematic Convolutional Codes"

From LNTwww
Line 43: Line 43:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Impulsantwort&nbsp; $\underline{g}$&nbsp;?
+
{What is the impulse response&nbsp; $\underline{g}$&nbsp;?
 
|type="()"}
 
|type="()"}
+ Es gilt&nbsp;  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...}  \hspace{0.05cm})$.
+
+&nbsp;  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...}  \hspace{0.05cm})$ holds.
- Es gilt&nbsp;  $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
+
-&nbsp;  $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$ holds.
  
{Es gelte&nbsp; $\underline{u} = (1, \, 1, \, 0, \, 1)$. Welche Aussagen gelten für die Paritysequenz&nbsp; $\underline{p}$&nbsp;?
+
{It holds&nbsp; $\underline{u} = (1, \, 1, \, 0, \, 1)$. Which statements hold for the parity sequence&nbsp; $\underline{p}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Es gilt&nbsp;  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
+
-&nbsp;  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$ holds.
+ Es gilt&nbsp;  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...}  \hspace{0.05cm})$.
+
+&nbsp;  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...}  \hspace{0.05cm})$ holds.
- Bei begrenzter Informationssequenz&nbsp; $\underline{u}$&nbsp; ist stets auch&nbsp; $\underline{p}$&nbsp; begrenzt.
+
- With limited information sequence&nbsp; $\underline{u}$&nbsp; is always also&nbsp; $\underline{p}$&nbsp; limited.
  
{Wie lautet die&nbsp; $D$&ndash;Übertragungsfunktion&nbsp; $G(D)$?
+
{What is the&nbsp; $D$&ndash;transfer function&nbsp; $G(D)$?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp;  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...}  \hspace{0.05cm}$
+
+&nbsp;  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...}  \hspace{0.05cm}$ holds.
+ Es gilt&nbsp;  $G(D) = (1 + D^2)/(1 + D + D^2)$.
+
+&nbsp;  $G(D) = (1 + D^2)/(1 + D + D^2)$ holds.
- Es gilt&nbsp;  $G(D) = (1 + D + D^2)/(1 + D^2)$.
+
-&nbsp;  $G(D) = (1 + D + D^2)/(1 + D^2)$ holds.
  
{Nun gelte&nbsp; $\underline{u} = (1, \, 1, \, 1)$. Welche Aussagen gelten für die Paritysequenz&nbsp; $\underline{p}$?
+
{Now let&nbsp; $\underline{u} = (1, \, 1, \, 1)$ hold. Which statements hold for the parity sequence&nbsp; $\underline{p}$?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp;  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$.
+
+&nbsp;  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...}  \hspace{0.05cm})$ holds.
- Es gilt&nbsp;  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...}  \hspace{0.05cm})$.
+
-&nbsp;  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...}  \hspace{0.05cm})$ holds.
- Bei unbegrenzter Impulsantwort&nbsp; $\underline{g}$&nbsp; ist stets auch&nbsp; $\underline{p}$&nbsp; unbegrenzt.
+
- With unlimited impulse response&nbsp; $\underline{g}$&nbsp; is always also&nbsp; $\underline{p}$&nbsp; unlimited.
  
{Wie groß ist die freie Distanz&nbsp; $d_{\rm F}$&nbsp; dieses RSC&ndash;Coders?
+
{What is the free distance&nbsp; $d_{\rm F}$&nbsp; of this RSC encoder?
 
|type="{}"}
 
|type="{}"}
 
$d_{\rm F} \ = \ ${ 5 3% }
 
$d_{\rm F} \ = \ ${ 5 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Verfolgt man die Übergänge im Zustandsdiagramm für die Sequenz&nbsp;  $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)$&nbsp;  am Eingang, so erhält man den Weg
+
'''(1)'''&nbsp; Tracing the transitions in the state diagram for the sequence&nbsp;  $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)$&nbsp;  at the input, we get the path
 
:$$S_0 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; \hspace{0.05cm}\text{...}  \hspace{0.05cm}$$
 
:$$S_0 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; \hspace{0.05cm}\text{...}  \hspace{0.05cm}$$
  
*Bei jedem Übergang ist das erste Codesymbol $x_i^{(1)}$ gleich dem Informationsbit $u_i$ und das Codesymbol $x_i^{(2)}$ gibt das Paritybit $p_i$ an.  
+
*For each transition, the first code symbol $x_i^{(1)}$ is equal to the information bit $u_i$ and the code symbol $x_i^{(2)}$ indicates the parity-check bit $p_i$.  
*Damit erhält man das Ergebnis entsprechend dem <u>Lösungsvorschlag 1</u>:
+
*This gives the result corresponding to <u>solution proposition 1</u>:
 
:$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},
 
:$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},
 
\hspace{0.05cm}1\hspace{0.05cm},
 
\hspace{0.05cm}1\hspace{0.05cm},
Line 89: Line 89:
 
= \underline{g}\hspace{0.05cm}.$$
 
= \underline{g}\hspace{0.05cm}.$$
  
*Bei einem jeden RSC&ndash;Code ist die Impulsantwort $\underline{g}$ unendlich lang und wird irgendwann periodisch, in diesem Beispiel mit der Periode&nbsp; $P = 3$&nbsp; und&nbsp; "$0, \, 1, \, 1$".
+
*For any RSC code, the impulse response $\underline{g}$ is infinite in length and becomes periodic at some point, in this example with period&nbsp; $P = 3$&nbsp; and&nbsp; "$0, \, 1, \, 1$".
  
  
  
[[File:P_ID3054__KC_A_4_9b_v1.png|right|frame|Verdeutlichung von&nbsp;  $\underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}$]]
+
[[File:P_ID3054__KC_A_4_9b_v1.png|right|frame|Clarification of&nbsp;  $\underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}$]]
'''(2)'''&nbsp; Die Grafik zeigt die Lösung dieser Aufgabe entsprechend der Gleichung&nbsp; $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$.
+
'''(2)'''&nbsp; The graph shows the solution of this exercise according to the equation&nbsp; $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$.
* Hierbei ist die Generatormatrix&nbsp; $\mathbf{G}$&nbsp; nach unten und rechts unendlich weit ausgedehnt.  
+
* Here the generator matrix&nbsp; $\mathbf{G}$&nbsp; is infinitely extended downward and to the right.  
*Richtig ist <u>der Lösungsvorschlag 2</u>.
+
*The correct solution is <u>proposal 2</u>.
 
<br clear=all>
 
<br clear=all>
'''(3)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 1 und 2</u>:
+
'''(3)'''&nbsp; Correct are <u>the proposed solutions 1 and 2</u>:
*Zwischen der Impulsantwort $\underline{g}$ und der $D$&ndash;Übertragungsfunktion $\mathbf{G}(D)$ besteht der Zusammenhang gemäß dem ersten Lösungsvorschlag:  
+
*Between the impulse response $\underline{g}$ and the $D$&ndash;transfer function $\mathbf{G}(D)$ there is the relation according to the first proposed solution:  
 
:$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm},
 
:$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm},
 
\hspace{-0.05cm}1\hspace{-0.05cm},
 
\hspace{-0.05cm}1\hspace{-0.05cm},
Line 112: Line 112:
 
G(D) =  1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 +  \hspace{0.05cm} \text{...} \hspace{0.05cm}.$$
 
G(D) =  1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 +  \hspace{0.05cm} \text{...} \hspace{0.05cm}.$$
  
*Überprüfen wir nun den zweiten Vorschlag:
+
*Let us now examine the second proposal:
 
:$$G(D) = \frac{1+  D^2}{1+ D  + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  
 
:$$G(D) = \frac{1+  D^2}{1+ D  + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  
 
G(D) \cdot [1+ D  + D^2] = 1+  D^2 \hspace{0.05cm}.$$
 
G(D) \cdot [1+ D  + D^2] = 1+  D^2 \hspace{0.05cm}.$$
  
*Die folgende Rechnung zeigt, dass diese Gleichung tatsächlich stimmt:
+
*The following calculation shows that this equation is indeed true:
 
:$$(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =$$
 
:$$(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =$$
 
:$$=1+ D+ D^2\hspace{1.05cm} +D^4 +  D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}$$
 
:$$=1+ D+ D^2\hspace{1.05cm} +D^4 +  D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}$$
Line 124: Line 124:
 
cm}+ D^2} \hspace{0.05cm}.$$
 
cm}+ D^2} \hspace{0.05cm}.$$
  
*Da aber die Gleichung (2) stimmt, muss die letzte Gleichung falsch sein.
+
*But since equation (2) is true, the last equation must be false.
  
  
  
'''(4)'''&nbsp; Richtig ist nur der <u>Lösungsvorschlag 1</u>:
+
'''(4)'''&nbsp; Correct is only the <u>proposed solution 1</u>:
*Aus $\underline{u} = (1, \, 1, \, 1)$ folgt $U(D) = 1 + D + D^2$. Damit gilt auch:
+
*From $\underline{u} = (1, \, 1, \, 1)$ follows $U(D) = 1 + D + D^2$. Thus also holds:
 
:$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm}  
 
:$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm}  
 
\Rightarrow\hspace{0.3cm}  \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
 
\Rightarrow\hspace{0.3cm}  \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
* Wären die Größen&nbsp; $u_i$&nbsp; und&nbsp; $g_i$&nbsp; reellwertig, so würde die (diskrete) Faltung&nbsp; $\underline{p} = \underline{u} * \underline{g}$&nbsp;  stets zu einer Verbreiterung führen &nbsp; &#8658; &nbsp; $\underline{p}$&nbsp; wäre in diesem Fall breiter als&nbsp; $\underline{u}$&nbsp; und auch breiter als&nbsp; $\underline{g}$.
+
* If the variables&nbsp; $u_i$&nbsp; and&nbsp; $g_i$&nbsp; were real-valued, the (discrete) convolution&nbsp; $\underline{p} = \underline{u} * \underline{g}$&nbsp;  would always lead to a broadening&nbsp; &#8658; &nbsp; $\underline{p}$&nbsp; in this case would be broader than&nbsp; $\underline{u}$&nbsp; and also broader than&nbsp; $\underline{g}$.
* Bei&nbsp; $u_i &#8712; {\rm GF}(2)$&nbsp; und&nbsp; $g_i &#8712; {\rm GF}(2)$&nbsp; kann es (muss es aber nicht) dagegen vorkommen, dass auch bei unbegrenztem&nbsp;  $\underline{u}$&nbsp; oder bei unbegrenztem&nbsp; $\underline{g}$&nbsp; das Faltungsprodukt&nbsp; $\underline{p} = \underline{u} * \underline{g}$&nbsp; begrenzt ist.
+
* On the other hand, for&nbsp; $u_i &#8712; {\rm GF}(2)$&nbsp; and&nbsp; $g_i &#8712; {\rm GF}(2)$&nbsp; it may (but need not) happen that even with unbounded&nbsp;  $\underline{u}$&nbsp; or for unbounded&nbsp; $\underline{g}$&nbsp; the convolution product&nbsp; $\underline{p} = \underline{u} * \underline{g}$&nbsp; is bounded.
 
[[File:P_ID3057__KC_A_4_9d_v1.png|right|frame|Verdeutlichung von&nbsp;  $\underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}$]]
 
[[File:P_ID3057__KC_A_4_9d_v1.png|right|frame|Verdeutlichung von&nbsp;  $\underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}$]]
*Das Ergebnis wird abschließend  noch entsprechend der Gleichung $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$ überprüft.
+
*The result is finally checked according to the equation $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$ is checked.
  
  

Revision as of 22:08, 29 November 2022

State transition diagram of an RSC code

In the  "Exercise 4.8"  important properties of convolutional codes have already been derived from the state transition diagram, assuming a non-recursive filter structure.

Now a rate $1/2$ RSC code is treated in a similar manner. Here "RSC" stands for "Recursive Systematic Convolutional".

The transfer function matrix of an RSC convolutional code can be specified as follows:

$${\boldsymbol{\rm G}}(D) = \left [ 1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D) \right ] \hspace{0.05cm}.$$

Otherwise, exactly the same conditions apply here as in exercise 4.8. We refer again to the following theory pages:

  1. "Systematic convolutional codes"
  2. "Representation in the state transition diagram"
  3. "Definition of the free distance"
  4. "GF(2) description forms of a digital filter"
  5. "Application of the D–transform to rate 1/n convolution encoders"
  6. "Filter structure with fractional–rational transfer function"


In the state transition diagram, the state  $S_0$  is always assumed. Two arrows go from each state. The label is "$u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}$". For a systematic code, this involves:

  • The first code bit is identical to the information bit:   $\hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}$.
  • The second code bit is the parity-check bit:   $\hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}$.




Hints:

  • The exercise refers to the chapter  "Basics of Turbo Codes".
  • Similar exercises can be found in chapters 3.1 through 3.3.
  • The following vectorial quantities are used in the questions for this exercise:
    • the information sequence:  $\hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} )$,
    • the parity-check sequence:  $\hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...} \hspace{0.05cm})$,
    • the impulse response:  $\hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...} \hspace{0.05cm} ); \hspace{0.2cm}$ this is equal to the parity sequence $\underline{p}$  for  $\underline{u} = (1, \, 0, \, 0, \text{...} \hspace{0.05cm} )$.


Questions

1

What is the impulse response  $\underline{g}$ ?

  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...} \hspace{0.05cm})$ holds.
  $\underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$ holds.

2

It holds  $\underline{u} = (1, \, 1, \, 0, \, 1)$. Which statements hold for the parity sequence  $\underline{p}$ ?

  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$ holds.
  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm})$ holds.
With limited information sequence  $\underline{u}$  is always also  $\underline{p}$  limited.

3

What is the  $D$–transfer function  $G(D)$?

  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...} \hspace{0.05cm}$ holds.
  $G(D) = (1 + D^2)/(1 + D + D^2)$ holds.
  $G(D) = (1 + D + D^2)/(1 + D^2)$ holds.

4

Now let  $\underline{u} = (1, \, 1, \, 1)$ hold. Which statements hold for the parity sequence  $\underline{p}$?

  $\underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm})$ holds.
  $\underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm})$ holds.
With unlimited impulse response  $\underline{g}$  is always also  $\underline{p}$  unlimited.

5

What is the free distance  $d_{\rm F}$  of this RSC encoder?

$d_{\rm F} \ = \ $


Solution

(1)  Tracing the transitions in the state diagram for the sequence  $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)$  at the input, we get the path

$$S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...} \hspace{0.05cm}$$
  • For each transition, the first code symbol $x_i^{(1)}$ is equal to the information bit $u_i$ and the code symbol $x_i^{(2)}$ indicates the parity-check bit $p_i$.
  • This gives the result corresponding to solution proposition 1:
$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm}) = \underline{g}\hspace{0.05cm}.$$
  • For any RSC code, the impulse response $\underline{g}$ is infinite in length and becomes periodic at some point, in this example with period  $P = 3$  and  "$0, \, 1, \, 1$".


Clarification of  $\underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}$

(2)  The graph shows the solution of this exercise according to the equation  $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$.

  • Here the generator matrix  $\mathbf{G}$  is infinitely extended downward and to the right.
  • The correct solution is proposal 2.


(3)  Correct are the proposed solutions 1 and 2:

  • Between the impulse response $\underline{g}$ and the $D$–transfer function $\mathbf{G}(D)$ there is the relation according to the first proposed solution:
$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}0\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}0\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.05cm}1\hspace{-0.05cm}, ... ) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad G(D) = 1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 + \hspace{0.05cm} \text{...} \hspace{0.05cm}.$$
  • Let us now examine the second proposal:
$$G(D) = \frac{1+ D^2}{1+ D + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G(D) \cdot [1+ D + D^2] = 1+ D^2 \hspace{0.05cm}.$$
  • The following calculation shows that this equation is indeed true:
$$(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =$$
$$=1+ D+ D^2\hspace{1.05cm} +D^4 + D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}$$
$$+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+ D^5 + D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...} $$
$$+ \hspace{1.63cm} D^2+D^3+ D^4 \hspace{1.05cm}+ D^6 +D^7 \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}$$
$$=\underline{1\hspace{0.72 cm}+ D^2} \hspace{0.05cm}.$$
  • But since equation (2) is true, the last equation must be false.


(4)  Correct is only the proposed solution 1:

  • From $\underline{u} = (1, \, 1, \, 1)$ follows $U(D) = 1 + D + D^2$. Thus also holds:
$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
  • If the variables  $u_i$  and  $g_i$  were real-valued, the (discrete) convolution  $\underline{p} = \underline{u} * \underline{g}$  would always lead to a broadening  ⇒   $\underline{p}$  in this case would be broader than  $\underline{u}$  and also broader than  $\underline{g}$.
  • On the other hand, for  $u_i ∈ {\rm GF}(2)$  and  $g_i ∈ {\rm GF}(2)$  it may (but need not) happen that even with unbounded  $\underline{u}$  or for unbounded  $\underline{g}$  the convolution product  $\underline{p} = \underline{u} * \underline{g}$  is bounded.
Verdeutlichung von  $\underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}$
  • The result is finally checked according to the equation $\underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}$ is checked.


(5)  Nach ähnlicher Vorgehensweise wie in der Aufgabe A4.8, (4) erkennt man:

  • Die freie Distanz wird auch hier durch den Pfad  $S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \hspace{0.05cm}\text{...}\hspace{0.05cm}$ bestimmt.
  • Die zugehörige Codesequenz  $\underline{x}$  ist nun aber  " $00 \ 11 \ 10 \ 11 \ 00 \ ... $".
  • Damit ergibt sich die freie Distanz zu  $d_{\rm F} \ \underline{= 5}$.
  • Beim nichtrekursiven Code (Aufgabe 4.8) war dagegen die freie Distanz  $d_{\rm F} = 3$.