Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Principle of Pseudo-Ternary Coding"

From LNTwww
Line 72: Line 72:
 
:gNyq(t)=const.cos(πrt/T)1(2rt/T)2si(πt/T)      GNyq(f),
 
:gNyq(t)=const.cos(πrt/T)1(2rt/T)2si(πt/T)      GNyq(f),
 
    
 
    
:*the root Nyquist impulse   ⇒   impulse response of the root raised cosine lowpass with rolloff factor r:  
+
:*the root Nyquist impulse   ⇒   impulse response of the root raised cosine low-pass with rolloff factor r:  
 
:gNyq(t)      GNyq(f)=const.GNyq(f). }}
 
:gNyq(t)      GNyq(f)=const.GNyq(f). }}
 
<br><br>
 
<br><br>
Line 116: Line 116:
 
*The decoder detects this code violation and replaces "+ 0 0 +" with "0 0 0 0" again.<br>  
 
*The decoder detects this code violation and replaces "+ 0 0 +" with "0 0 0 0" again.<br>  
 
<br><br>
 
<br><br>
=== Zur AKF–Berechnung eines Digitalsignals ===
+
=== Calculating the ACF of a digital signal ===
In der Versuchsdurchführung werden einige Größen und Zusamenhänge verwendet, die hier kurz eräutert werden sollen:
+
In the execution of the experiment some quantities and correlations are used, which shall be briefly explained here:
  
*&nbsp; Das (zeitlich unbegrenzte) Digitalsignal beinhaltet sowohl die Quellenstatistik (Amplitudenkoeffizienten &nbsp;aν)&nbsp; als auch die Sendeimpulsform &nbsp;g(t):
+
*&nbsp; The (time-unlimited) digital signal includes both the source statistics (amplitude coefficients &nbsp;aν)&nbsp; and the transmitted pulse shape &nbsp;g(t):
 
:s(t)=+ν=aνg(tνT).
 
:s(t)=+ν=aνg(tνT).
  
*&nbsp; Ist&nbsp; s(t)&nbsp; die Musterfunktion eines stationären und ergodischen Zufallsprozesses, so gilt für die &nbsp;[[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Zufallsprozesse_.281.29|Autokorrelationsfunktion]]&nbsp; $\rm (AKF)$:  
+
*&nbsp; If&nbsp; s(t)&nbsp; is the pattern function of a stationary and ergodic random process, then for the &nbsp;[[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Random_processes|"Auto-Correlation Function"]]&nbsp; $\rm (ACF)$:  
 
:$$\varphi_s(\tau) = {\rm E}\big [s(t) \cdot s(t + \tau)\big ] =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T}
 
:$$\varphi_s(\tau) = {\rm E}\big [s(t) \cdot s(t + \tau)\big ] =  \sum_{\lambda = -\infty}^{+\infty}{1}/{T}
 
\cdot \varphi_a(\lambda)\cdot\varphi^{^{\bullet} }_{gs}(\tau -
 
\cdot \varphi_a(\lambda)\cdot\varphi^{^{\bullet} }_{gs}(\tau -
 
\lambda \cdot T)\hspace{0.05cm}.$$
 
\lambda \cdot T)\hspace{0.05cm}.$$
  
*&nbsp; Diese Gleichung beschreibt die Faltung der diskreten AKF&nbsp; $\varphi_a(\lambda) = {\rm E}\big [ a_\nu \cdot a_{\nu + \lambda}\big]$&nbsp; der Amplitudenkoeffizienten mit der Energie&ndash;AKF des Grundimpulses:  
+
*&nbsp; This equation describes the convolution of the discrete ACF&nbsp; φa(λ)=E[aνaν+λ]&nbsp; of the amplitude coefficients with the energy&ndash;ACF of the base impulse:  
  
 
:$$\varphi^{^{\bullet} }_{g}(\tau) =
 
:$$\varphi^{^{\bullet} }_{g}(\tau) =
Line 133: Line 133:
 
\tau)\,{\rm d} t \hspace{0.05cm}.$$
 
\tau)\,{\rm d} t \hspace{0.05cm}.$$
  
*Der Punkt soll darauf hinweisen, dass&nbsp; φg(τ)&nbsp; die Einheit einer Energie besitzt, während&nbsp; φs(τ)&nbsp; eine Leistung angibt und&nbsp; φa(λ)&nbsp; dimensionslos ist.
+
*The point is to indicate that&nbsp; φg(τ)&nbsp; has the unit of an energy, while&nbsp; φs(τ)&nbsp; indicates a power and&nbsp; φa(λ)&nbsp; is dimensionless.
 
<br>
 
<br>
=== Zur LDS-Berechnung eines Digitalsignals ===
+
=== Calculating the PSD of a digital signal ===
Die Entsprechungsgröße zur AKF ist im Frequenzbereich das [[Stochastische_Signaltheorie/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine|Leistungsdichtespektrum]]&nbsp; $\rm (LDS)&nbsp;{\it \Phi}_s(f)$, das mit&nbsp; φs(τ)&nbsp; über das Fourierintegral fest verknüpft ist:<br>
+
The corresponding quantity to the ACF in the frequency domain is the [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Wiener-Khintchine_Theorem|"Power Spectral Density"]]&nbsp; $\rm (PSD)&nbsp;{\it \Phi}_s(f)$, which is fixedly related to&nbsp; φs(τ)&nbsp; via the Fourier integral:<br>
 
:$$\varphi_s(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
:$$\varphi_s(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
   {\it \Phi}_s(f)  =  \int_{-\infty}^{+\infty} \varphi_s(\tau) \cdot
 
   {\it \Phi}_s(f)  =  \int_{-\infty}^{+\infty} \varphi_s(\tau) \cdot
 
   {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi  f \hspace{0.02cm} \tau}
 
   {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi  f \hspace{0.02cm} \tau}
 
   \,{\rm d} \tau  \hspace{0.05cm}.$$
 
   \,{\rm d} \tau  \hspace{0.05cm}.$$
*Das Leistungsdichtespektrum &nbsp;Φs(f)&nbsp; kann unter Berücksichtigung der Dimensionsbereinigung&nbsp; (1/T)&nbsp; als Produkt zweier Funktionen dargestellt werden:
+
*The power spectral density &nbsp;Φs(f)&nbsp; can be represented as a product of two functions, taking into account the dimensional adjustment&nbsp; (1/T)&nbsp;:
 
:$${\it \Phi}_s(f) =  {\it \Phi}_a(f) \cdot  {1}/{T} \cdot
 
:$${\it \Phi}_s(f) =  {\it \Phi}_a(f) \cdot  {1}/{T} \cdot
 
|G_s(f)|^2 \hspace{0.05cm}.$$
 
|G_s(f)|^2 \hspace{0.05cm}.$$
*Der erste Term &nbsp;Φa(f)&nbsp; ist dimensionslos und beschreibt die spektrale Formung des Sendesignals durch die statistischen Bindungen der Quelle:<br>
+
*The first term &nbsp;Φa(f)&nbsp; is dimensionless and describes the spectral shaping of the transmitted signal by the statistical relations of the source:<br>
 
:$$\varphi_a(\lambda) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}{\it \Phi}_a(f) =  \sum_{\lambda =
 
:$$\varphi_a(\lambda) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}{\it \Phi}_a(f) =  \sum_{\lambda =
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm
 
-\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm
Line 151: Line 151:
 
1}^{\infty}\varphi_a(\lambda)\cdot\cos ( 2 \pi  f  
 
1}^{\infty}\varphi_a(\lambda)\cdot\cos ( 2 \pi  f  
 
\lambda T) \hspace{0.05cm}.$$
 
\lambda T) \hspace{0.05cm}.$$
*Φg(f)&nbsp; berücksichtigt die spektrale Formung durch &nbsp;g(t). Je schmaler dieser ist, desto breiter ist &nbsp;|G(f)|2&nbsp; und um so größer ist damit der Bandbreitenbedarf:  
+
*Φg(f)&nbsp; takes into account the spectral shaping by &nbsp;g(t). The narrower this is, the wider &nbsp;|G(f)|2&nbsp; and thus the larger the bandwidth requirement:  
 
:$$\varphi^{^{\hspace{0.05cm}\bullet}}_{g}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
:$$\varphi^{^{\hspace{0.05cm}\bullet}}_{g}(\tau) \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm}
 
   {\it \Phi}^{^{\hspace{0.08cm}\bullet}}_{g}(f)  = |G(f)|^2
 
   {\it \Phi}^{^{\hspace{0.08cm}\bullet}}_{g}(f)  = |G(f)|^2
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
*Das Energiedichtespektrum Φg(f)&nbsp; hat die Einheit &nbsp;Ws/Hz&nbsp; und  das Leistungsdichtespektrum&nbsp; Φs(f)&nbsp; nach der Division durch den Symbolabstand &nbsp;T&nbsp; die Einheit &nbsp;W/Hz.  
+
*The energy spectral density Φg(f)&nbsp; has the unit &nbsp;Ws/Hz&nbsp; and the power spectral density&nbsp; Φs(f)&nbsp; after division by the symbol spacing &nbsp;T&nbsp; has the unit &nbsp;W/Hz.  
  
  

Revision as of 19:16, 24 March 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


The applet covers the properties of the best known pseudo-ternary codes, namely:

  1.   First-order bipolar code,  AMI code  (from: Alternate Mark Inversion),  characterized by the parameters  NC=1, KC=+1,
  2.   Duobinary code,  (DUOB),  code parameters:  NC=1, KC=1,
  3.   Second order bipolar code  (BIP2),  code parameters:  NC=2, KC=+1.


At the input is the redundancy-free binary bipolar source symbol sequence  qν {+1,1}   ⇒   rectangular signal  q(t)  an.  Illustrating the generation.

  • of the binary–precoded sequence  bν {+1,1},  represented by the also redundancy-free binary bipolar rectangular signal  b(t),
  • the pseudo-ternary code sequence  cν {+1, 0,1},  represented by the redundant ternary bipolar rectangular signal  c(t),
  • the equally redundant ternary transmitted signal  s(t), characterized by the amplitude coefficients  aν,  and the (transmitted–) fundamental momentum  g(t):
s(t)=+ν=aνg(tνT).

The base impulse  g(t)  –  in the applet  "Rectangle",  "Nyquist" and  "Root–Nyquist"  –  determines not only the shape of the transmitted signal, but also the course of

  • of the auto-correlation function  (ACF)  φs(τ)  and
  • of the associated power spectral density  (PSD)  Φs(f).


The applet also shows that the total power spectral density  Φs(f) can be split into the part  Φa(f) that takes into account the statistical relations of the amplitude coefficients  aν   and the energy spectral density Φg(f)=|G(f)|2, characterized by the momentum shape  g(t).

Note   In the applet, no distinction is made between the encoder symbols  cν{+1, 0,1}  and the amplitude coefficients  aν{+1, 0,1}  .   It should be remembered that the  aν  are always numerical values, while for the encoder symbols also the notation  cν{plus, zero, minus}  would be admissible.

Theoretical Background

General description of the pseudo-multilevel codes


In symbolwise coding,  each incoming source symbol  qν  generates an encoder symbol  cν,  which depends not only on the current input symbol  qν  but also on the  NC  preceding symbols  qν1, ... , qνNC.   NC  is referred to as the  "order"  of the code.

Typical for symbolwise coding is that

  • the symbol duration  T  of the encoded signal  (and of the transmitted signal)  matches the bit duration  TB  of the binary source signal,  and
  • encoding and decoding do not lead to major time delays,  which are unavoidable when block codes are used.

The  "pseudo-multilevel codes"  – better known as  "partial response codes"  –  are of special importance.  In the following,  only  "pseudo-ternary codes"   ⇒   level number  M=3  are considered. 

  • These can be described by the block diagram corresponding to the left graph. 
  • In the right graph an equivalent circuit is given,  which is very suitable for an analysis of these codes.
Block diagram  (above)  and equivalent circuit  (below)  of a pseudo-ternary encoder


One can see from the two representations:

  • The pseudo-ternary encoder can be split into the  "non-linear pre-encoder"  and the  "linear coding network",  if the delay by  NCT  and the weighting by  KC  are drawn twice for clarity  – as shown in the right equivalent figure.
  • The  "non-linear pre-encoder"  obtains the precoded symbols  bν,  which are also binary,  by a modulo–2 addition  ("antivalence")  between the symbols  qν  and  KCbνNC
qν{1,+1},KC{1,+1}bν{1,+1}.
  • Like the source symbols  qν,  the symbols  bν  are statistically independent of each other.  Thus,  the pre-encoder does not add any redundancy.  However,  it allows a simpler realization of the decoder and prevents error propagation after a transmission error.
  • The actual encoding from binary  (Mq=2)  to ternary  (M=Mc=3)  is done by the  "linear coding network"  by the conventional subtraction
c(t)=1/2[b(t)KCb(tNCT)]{1, 0,+1},
which can be described by the following  "impulse response"  resp.  "transfer function"  with respect to the input signal  b(t)  and the output signal  c(t)
hC(t)=1/2[δ(t)KCδ(tNCT)]      HC(f)=1/2[1KCej2πNCT].
  • The relative redundancy is the same for all pseudo-ternary codes.  Substituting  Mq=2,  Mc=3  and  Tc=Tq  into the  "general definition equation",  we obtain
rc=1RqRc=1TcTqlog2(Mq)log2(Mc)=1TcTqlog2(Mc)rc=11/log2(3)36.9%.

The  transmitted signal of all pseudo-ternary codes  is always represented as follows:

s(t)=+ν=aνg(tνT).
  • The property of the current pseudo-ternary code is reflected in the statistical bonds between the  aν  In all cases  aν{1, 0,+1}.
  • The basic transmitting pulse  g(t)  provides on the one hand the required energy, but has also influence on the statistical bonds within the signal.
  • In addition to the NRZ rectangular pulse  gR(t) can be selected in the program: 
  • the Nyquist impulse   ⇒   impulse response of the raised cosine low-pass with rolloff factor r:
gNyq(t)=const.cos(πrt/T)1(2rt/T)2si(πt/T)      GNyq(f),
  • the root Nyquist impulse   ⇒   impulse response of the root raised cosine low-pass with rolloff factor r:
gNyq(t)      GNyq(f)=const.GNyq(f).



Properties of the AMI code


The individual pseudo-ternary codes differ in the  NC  and  KC parameters.  The best-known representative is the  first-order bipolar code  with the code parameters

  •  NC=1
  •  KC=1,


which is also known as  AMI code  (from: "Alternate Mark Inversion").  This is used e.g. with  "ISDN"  ("Integrated Services Digital Networks")  on the so-called  S0  interface.

Signals with AMI coding and HDB3 coding
  • The graph above shows the binary source signal  q(t).
  • The second and third diagrams show:
  • the likewise binary signal  b(t)  after the pre-encoder,  and
  • the encoded signal  c(t)=s(t)  of the AMI code.


One can see the simple AMI encoding principle:

  1. Each binary value  "–1"  of the source signal  q(t)   ⇒   symbol  L  is encoded by the ternary amplitude coefficient  aν=0

  2. The binary value  "+1"  of the source signal  q(t)   ⇒   symbol  H  is alternately represented by  aν=+1  and  aν=1

This ensures that the AMI encoded signal does not contain any   "long sequences"

  •   cν=...,+1,+1,+1,+1,+1,...   resp.
  •   cν=...,1,1,1,1,1,...,


which would lead to problems with a DC-free channel.

On the other hand,  the occurrence of long zero sequences is quite possible,  where no clock information is transmitted over a longer period of time.
To avoid this second problem,  some modified AMI codes have been developed, for example the  "B6ZS code"  and the  "HDB3 code":

  • In the  HDB3 code  (green curve in the graphic),  four consecutive zeros in the AMI encoded signal are replaced by a subsequence that violates the AMI encoding rule.
  • In the gray shaded area,  this is the sequence  "+ 0 0 +",  since the last symbol before the replacement was a  "minus".
  • This limits the number of consecutive zeros to   3   for the HDB3 code and to   5   for the  "B6ZS code"
  • The decoder detects this code violation and replaces "+ 0 0 +" with "0 0 0 0" again.



Calculating the ACF of a digital signal

In the execution of the experiment some quantities and correlations are used, which shall be briefly explained here:

  •   The (time-unlimited) digital signal includes both the source statistics (amplitude coefficients  aν)  and the transmitted pulse shape  g(t):
s(t)=+ν=aνg(tνT).
  •   If  s(t)  is the pattern function of a stationary and ergodic random process, then for the  "Auto-Correlation Function"  (ACF):
φs(τ)=E[s(t)s(t+τ)]=+λ=1/Tφa(λ)φgs(τλT).
  •   This equation describes the convolution of the discrete ACF  φa(λ)=E[aνaν+λ]  of the amplitude coefficients with the energy–ACF of the base impulse:
φg(τ)=+g(t)g(t+τ)dt.
  • The point is to indicate that  φg(τ)  has the unit of an energy, while  φs(τ)  indicates a power and  φa(λ)  is dimensionless.


Calculating the PSD of a digital signal

The corresponding quantity to the ACF in the frequency domain is the "Power Spectral Density"  (PSD)  Φs(f), which is fixedly related to  φs(τ)  via the Fourier integral:

φs(τ)Φs(f)=+φs(τ)ej2πfτdτ.
  • The power spectral density  Φs(f)  can be represented as a product of two functions, taking into account the dimensional adjustment  (1/T) :
Φs(f)=Φa(f)1/T|Gs(f)|2.
  • The first term  Φa(f)  is dimensionless and describes the spectral shaping of the transmitted signal by the statistical relations of the source:
φa(λ)Φa(f)=+λ=φa(λ)ej2πfλT=φa(0)+2λ=1φa(λ)cos(2πfλT).
  • Φg(f)  takes into account the spectral shaping by  g(t). The narrower this is, the wider  |G(f)|2  and thus the larger the bandwidth requirement:
φg(τ)Φg(f)=|G(f)|2.
  • The energy spectral density Φg(f)  has the unit  Ws/Hz  and the power spectral density  Φs(f)  after division by the symbol spacing  T  has the unit  W/Hz.



Power-spectral density of the AMI code


The frequency response of the linear code network of a pseudo-ternary code is generally:

HC(f)=1/2[1KCej2πfNCT]=1/2[1Kejα].

This gives the power-spectral density  (PSD)  of the amplitude coefficients  (K  and  α  are abbreviations according to the above equation):

Φa(f)=|HC(f)|2=[1Kcos(α)+jKsin(α)][1Kcos(α)jKsin(α)]4=...=1/4[22Kcos(α)]
Power-spectral density of the AMI code
Φa(f)=|HC(f)|2=1/2[1KCcos(2πfNCT)]φa(λT).

In particular,  for the power-spectral density of the AMI code  (NC=KC=1),  we obtain:

Φa(f)=1/2[1cos(2πfT)]=sin2(πfT).

The graph shows

  • the PSD  Φa(f)  of the amplitude coefficients  (red curve),  and
  • the PSD  Φs(f)  of the total transmitted signal  (blue),  valid for NRZ rectangular pulses.


One recognizes from this representation

  • that the AMI code has no DC component,  since  Φa(f=0)=Φs(f=0)=0
  • the power  PS=s20/2  of the AMI-coded transmitted signal  (integral over  Φs(f)  from    to  +).


Notes:

  • The PSD of the HDB3 and B6ZS codes differs only slightly from that of the AMI code.


Properties of the duobinary code


The  duobinary code  is defined by the code parameters  NC=1  and  KC=1.  This gives the power-spectral density  (PSD)  of the amplitude coefficients and the PSD of the transmitted signal:

Power-spectral density of the duobinary code
Φa(f)=1/2[1+cos(2πfT)]=cos2(πfT),
Φs(f)=s20Tcos2(πfT)si2(πfT)=s20Tsi2(2πfT).

The graph shows the power-spectral density

  • of the amplitude coefficients   ⇒   Φa(f)  as a red curve,
  • of the total transmitted signal   ⇒   Φs(f)  as a blue curve.

In the second graph,  the signals  q(t),  b(t)  and  c(t)=s(t)  are sketched. We refer here again to the  (German language)  SWF applet  "Signals, ACF, and PSD of pseudo-ternary codes",  which also clarifies the duobinary code.

Signals in duobinary coding







From these illustrations it is clear:

  • In the duobinary code,  any number of symbols with same polarity  ("+1"  or  "–1")  can directly succeed each other   ⇒   Φa(f=0)=1Φs(f=0)=1/2s20T.
  • In contrast,  for the duobinary code,  the alternating sequence  "... , +1, –1, +1, –1, +1, ..."  does not occur,  which is particularly disturbing with respect to intersymbol interference.  Therefore,  in the duobinary code:  Φs(f=1/(2T)=0.
  • The power-spectral density  Φs(f)  of the pseudo-ternary duobinary code is identical to the PSD with redundancy-free binary coding at half rate (symbol duration  2T).



Exercises


  • First, select the number  (1, 2,... )  of the task to be processed.  The number  "0"  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values are adjusted.  Solution after pressing "Show Solution".


(1)  Consider and interpret the binary pre–coding of the  AMI  code using the source symbol sequence  C  assuming  b0=+1.

  • The modulo–2 addition can also be taken as "antivalence".  It holds  bν=+1,  if  qν  and  bν1  differ, otherwise set  bν=1 :
  b1=(q1=+1) XOR (b0=+1)=1,  b2=(q2=1) XOR (b1=1)=1,  b3=(q3=1) XOR (b2=1)=1,
  b4=(q4=+1) XOR (b3=1)=+1,  b5=(q5=+1) XOR (b4=+1)=1,  b6=(q6=+1) XOR (b5=1)=+1,  b7=b8=...=1.
  • With the initial condition  b0=1  we get the negated sequence:  b4=b6=1.  All others  bν=+1.


(2)  Let  b0=+1.  Consider the AMI encoded sequence  cν  of the source symbol sequence  C  and give their amplitude coefficients  aν

  • It holds:  a1=0.5(b1b0)=1a2=0.5(b2b1)=0a3=0.5(b3b2)=0a4=+1a5=1a6=+1a7=1a8=a9=...=0.
  • In contrast to the pre–coding, the conventional addition (subtraction) is to be applied here and not the modulo–2 addition.


(3)  Now consider the AMI coding for several random sequences.  What rules can be derived from these experiments for the amplitude coefficients  aν ?

  • Each binary value  "–1"  of   q(t)   ⇒   symbol  L  is encoded by the ternary coefficient  aν=0.  Any number of  aν=0  can be consecutive.
  • The binary value  "+1"  of   q(t)   ⇒   symbol  H  is represented alternatively with   aν=+1  and  aν=1 , starting with  aν=1,  if  b0=+1.
  • From the source symbol sequence  A   ⇒   qν+1  the code symbol sequence  +1,1,+1,1,... . Long sequences  aν+1  or   aν1  are shot out.


(4)  Continue with  AMI  coding.  Interpret the autocorrelation function  φa(λ)  of the amplitude coefficients and the power density spectrum  Φa(f).

  • The discrete ACF  φa(λ)  of the amplitude coefficients is only defined for integer  λ  values.   With AMI coding  (NC=1)  holds:   For  |λ|>1   ⇒   all  φa(λ)=0.
  • φa(λ=0)  is equal to the root mean square of the amplitude coefficients   ⇒   φa(λ=0)=Pr(aν=+1)(+1)2+Pr(aν=1)(1)2=0.5.
  • Only the combinations  (+1,1)  and  (1,+1)  contribute to the expected value  E[aνaν+1]   Result:  φa(λ=±1)=E[aνaν+1]=0.25.
  • The power density spectrum  Φa(f)  is the Fourier transform of the discrete ACF  φa(λ).  Result:  Φa(f)=1/2[1cos(2πfT)]=sin2(πfT).
  • From   Φa(f=0)=0  follows:   The AMI code is especially interesting for channels over which no DC component can be transmitted.


(5)  We consider further AMI coding and rectangular pulses.  Interpret the ACF  φs(τ)  of the transmission signal and the PDS  Φs(f).

  • φs(τ)  results from the convolution of the discrete AKF  φa(λ)  with  φg(τ).   For rectangular pulses  (duration T):  The energy–AKF  φg(τ)  is a triangle of duration  2T.
  • It holds  φs(τ=0)=φa(λ=0)=0.5, φs(±T)=φa(1)=0.25, , φs(±2T)=φa(2)=0.  Between these discrete values, φs(τ)  is always linear.
  • The PDS  Φs(f)  is obtained from  Φa(f)=sin2(πfT)  by multiplying with  Φg(f)=sinc2(fT).  This does not change anything at the zeros of  Φa(f) .


(6)  What changes with respect to  s(t)φs(τ)  and  Φs(f)  with the  Nyquist  pulse?  Vary the roll–off factor here in the range  0r1.

  • A single Nyquist pulse can be represented with the source symbol sequence  B  in the  s(t)  range.  You can see equidistant zero crossings in the distance  T.
  • Also, for any AMI random sequence, the signal values  s(t=νT)  for each  r  correspond exactly to their nominal positions.  Outside these points, there are deviations.
  • In the special case  r=0  the energy–LDS  Φg(f)  is constant in the range  |f|<1/2T.  Accordingly, the energy–ACF  φg(τ)  has a  sinc  shape.
  • On the other hand, for larger  r  the zeros of  φg(τ)  are no longer equidistant, since although  G(f)  satisfies the first Nyquist criterion, it does not  Φg(f)=[G(f)]2.
  • The main advantage of the Nyquist pulse is the much smaller bandwidth.  Here only the frequency range  |f|<(1+r)/(2T)  has to be provided.


(7)  Repeat the last experiment using the  Root raised cosine  pulse instead of the Nyquist pulse.  Interpret the results.

  • In the special case  r=0  the results are as in  (6)Φg(f)  is constant in the range  |f|<1/2T  and outside zero;  φg(τ)  has a  sinc  shape.
  • Also for larger  r  the zeros of  φg(τ)  are eqidistant  (but not  sinc  shaped)   ⇒   Φg(f)=[G(f)]2  satisfies the first Nyquist criterion.
  • On the other hand, G(f)  does not satisfy the first Nyquist criterion  (except for  r=0).  Intersymbol interference occurs already at the transmitter   ⇒   signal  s(t).
  • But this is also not a fundamental problem.  By using an identically shaped reception filter like  G(f)  intersymbol interference at the decider is avoided.


(8)  Consider and check the pre–coding  (bν)  and the amplitude coefficients  (aν)  with the  duobinary  coding   (source symbol sequence  Cb0=+1).

  • b1=(q1=+1) XOR (¯b0=1)=+1,  b2=(q2=1) XOR (¯b1=1)=1,  b3=...=b7=+1,  b8=b10=...=1b9=b11=...=+1.
  • a1=0.5(b1+b0)=+1a2=0.5(b2+b1)=0a3=0.5(b3+b2)=0a4=...=a7=+1a8=a9=...=0.
  • With the starting condition  b0=1  we get again the negated sequence:     a1=1a2=a3=0a4=...=a7=1a8=a9=...=0.


(9)  Now consider the Duobinary coding for several random sequences.  What rules can be derived from these experiments for the amplitude coefficients  aν?

  • The discrete ACF values are  φa(λ=0)=+0.5φa(λ=1)=+0.25φa(λ=2)=0   ⇒   Φa(f)=1/2[1+cos(2πfT)]=cos2(πfT).
  • Unlike the AMI coding, the encoded sequences  aν+1  and   aν1  are possible here   ⇒   For the Duobinary code holds  Φa(f=0)=1 (0).
  • As with the AMI code, the "long zero sequence"   ⇒   aν0  is possible, which can again lead to synchronization problems.
  • Excluded are the combinations  aν=+1, aν+1=1  and   aν=1, aν+1=+1,  recognizable by the PDS value  Φa(f=1/(2T))=0.
  • Such direct transitions  aν=+1   ⇒   aν+1=1  resp.   aν=1   ⇒   aν+1=+1  lead to large intersymbol interference and thus to a higher error rate.


(10)  Compare the coding results of second order bipolar code  (BIP2)  and first order bipolar code  (AMI)  for different source symbol sequences.

  • For a single rectangular pulse   ⇒   source symbol sequence  B  both codes result in the same encoded sequence and the same encoded signal  c(t)   ⇒   also an isolated pulse.
  • The "Permanent–One sequence"  A  now results  cν=1,1,+1,+1,1,1,+1,+1,. ..  instead of   cν=1,+1,1,+1,1,+1,....
  • The simple decoding algorithm of the AMI code  (the ternary  0  becomes the binary  1,  the ternary  ±1  becomes the binary  +1)  cannot be applied to  BIP2 .


(11)  View and interpret the various ACF and LDS graphs of the  BIP2  compared to the  AMI  code.

  • For  AMI:   φa(λ=±1)=0.25, φa(λ=±2)=0.   For  BIP2:   φa(λ=±1)=0, φa(λ=±2)=0.25.  In both cases:  φa(λ=0)=0.5.
  • From the  AMI power density spectrum  Φa(f)=sin2(πfT)  follows for  BIP2Φa(f)=sin2(2πfT)  by compression with respect to the  f–axis.
  • Zero at  f=0:  At most two  +1  directly follow each other, and also at most only two  1.  In the AMI code  +1  and  1  occur only in isolation.
  • Next zero at  f=1/(2T):  The infinitely long  (+1,1)  sequence is excluded in  BIP2  as in the  Duobinary  code.
  • Consider and interpret also the functions  φs(τ)  and  Φs(f)  for the pulses "rectangle", "Nyquist" and "Root raised cosine".


Applet Manual

Bildschirmabzug (deutsche Version, heller Hintergrund)


    (A)     Theme (veränderbare grafische Oberflächengestaltung)

  • Dark:   schwarzer Hintergrund  (wird von den Autoren empfohlen)
  • Bright:   weißer Hintergrund  (empfohlen für Beamer und Ausdrucke)
  • Deuteranopia:   für Nutzer mit ausgeprägter Grün–Sehschwäche
  • Protanopia:   für Nutzer mit ausgeprägter Rot–Sehschwäche

    (B)     Zugrundeliegendes Blockschaltbild

    (C)     Auswahl des Pseudoternörcodes:
                   AMI–Code, Duobinärcode, Bipolarcode 2. Ordnung

    (D)     Auswahl des Grundimpulses  g(t):
                   Rechteckimpuls, Nyquistimpuls, Wurzel–Nyquistimpuls

    (E)     Rolloff–Faktor (Frequenzbereich) für "Nyquist" und "Wurzel–Nyquist"

    (F)     Einstellung von  34=12  Bit der Quellensymbolfolge

    (G)     Auswahl einer drei voreingestellten Quellensymbolfolgen

    (H)     Zufällige binäre Quellensymbolfolge

    ( I )     Schrittweise Verdeutlichung der Pseudoternärcodierung

    (J)     Ergebnis der Pseudoternärcodierung:  Signale  q(t)b(t)c(t)s(t)

    (K)     Löschen der Signalverläufe im Grafikbereich  M

    (L)     Skizzen für Autokorrelationsfunktion & Leistungsdichtespektrum

    (M)     Grafikbereich:  Quellensignal  q(t), Signal  b(t)  nach Vorcodierung,
                   Codersignal  c(t)  mit Rechtecken, Sendesignal  s(t)  gemäß  g(t)

    (N)     Bereich für Übungen:  Aufgabenauswahl, Fragen, Musterlösung

About the Authors

This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2010 by  Stefan Müller    as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • In 2020 the program was redesigned by  Carolin Mirschina  as part of her bachelor thesis  (Supervisor: Tasnád Kernetzky ) via "HTML5".
  • Last revision and English version 2021 by  Carolin Mirschina  in the context of a working student activity. 


The conversion of this applet to HTML 5 was financially supported by  "Studienzuschüsse"  (Faculty EI of the TU Munich).  We thank.

Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen