Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Coherent and Non-Coherent On-Off Keying"

From LNTwww
 
Line 216: Line 216:
  
  
    '''(A)'''     Auswahl:
+
    '''(A)'''     Selection:
::*Kohärent,
+
::*coherent,
::*inkohärent,
+
::*Incoherent,
::*inkohärent mit Näherung.  
+
::*Incoherent with approximation.  
  
    '''(B)'''     Parametereingabe:   
+
    '''(B)'''     Parameter input:   
 
::*σAWGN,   
 
::*σAWGN,   
 
::*s0,   
 
::*s0,   
Line 227: Line 227:
 
::*Gopt   
 
::*Gopt   
  
    '''(C)'''     Numerischer Ausgabebereich der Wahrscheinlichkeiten
+
    '''(C)'''     Numerical output area of probabilities.
  
    '''(D)'''     Grafischer Ausgabebereich der WDF-Anteile
+
    '''(D)'''     Graphical output area of PDF proportions.
  
    '''(E)'''     Aufgabenauswahl
+
    '''(E)'''     Exercise selection
  
    '''(F)'''     Fragen und Lösungen
+
    '''(F)'''     Questions and solutions
 
<br clear=all>
 
<br clear=all>
 
==About the Authors==
 
==About the Authors==

Latest revision as of 18:56, 26 April 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


Considered is the symbol error probability  pS  of   "On–off keying"   (OOK)  in the presence of white noise,  characterized by the standard deviation  σAWGN,  both in the case of  coherent demodulation  and in the case of  noncoherent demodulation.   Plotted for both cases are the probability density functions  (PDF)  of the received signal  r(t)  for the possible transmitted symbols  s0  and  s10

  • In the coherent case, there are two Gaussian functions around  s0  and  s1.
  • In the incoherent case,  there is a Rayleigh PDF for the symbol  s1=0  and a Rice PDF for  s00,  whose form also depends on the input parameter  CRice.


The applet returns the joint probabilities  {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})   ⇒   (filled blue area in the PDF graph)  and  {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})   ⇒   (red area)  and as a final result: 

p_{\rm S} = {\rm Pr}(\boldsymbol{r} \ne \boldsymbol{s})= {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).
  • All these quantities also depend on the decision threshold  G  whose optimal value in each case is also determined.
  • In addition,  the applet shows which error one makes when approximating the generally more complicated Rice PDF by the best possible Gaussian PDF.



Theoretical Background


On–Off–Keying with coherent demodulation

The simplest digital modulation method is  "On–off keying"  \rm (OOK).  This method – also called  "Amplitude Shift Keying"  \rm (2–ASK)  – can be characterized as follows:

Signal space constellations for on-off keying
  • \rm OOK  is a binary and one-dimensional modulation method,  for example with  s_{1} \equiv 0  and
  • \boldsymbol{s}_{0} = \{s_0,\ 0\}  (for cosinusoidal carrier,  left graph)  resp.
  • \boldsymbol{s}_{0} = \{0,\ -s_0\}  (for sinusoidal carrier,  right graph).
  • With coherent demodulation,  the signal space constellation of the received signal is equal to that of the transmitted signal and again consists of the two points  \boldsymbol{r}_0=\boldsymbol{s}_0  and  \boldsymbol{r}_1=\boldsymbol{s}_1.  
  • In this case,  the AWGN noise is one-dimensional with variance  \sigma_{\rm AWGN}^2  and one obtains  corresponding to the   "theory section"  for the  "symbol error probability":
p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s})= {\rm Q} \left ( \frac{s_0/2}{\sigma_{\rm AWGN}}\right ) = {\rm Q} \left ( \sqrt{ {E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.

To this it should be noted:

  1. The function  {\rm Q}(x)  is called the  "Complementary Gaussian Error Function".
  2. The above equation applies to equally probable symbols with the decision threshold  G  midway between  \boldsymbol{r}_0  and  \boldsymbol{r}_1.
  3. The distance of the two signal points from the decision threshold  G  is thus respectively  \Delta G = s_0/2  (counter in the argument of the first  \rm Q–function).
  4. E_{\rm S}=s_0^2/2 \cdot T  denotes for this case the  "average energy per symbol"  and  N_0=2T \cdot \sigma_{\rm AWGN}^2  is the  (one-sided)  AWGN noise power density.


BER calculation for coherent demodulation

\text{Example 1:}  Let be  \sigma_{\rm AWGN}= 0.8  and  s_{0} = 2,  ⇒   G=1  (these values are normalized to  1\hspace{0.05cm} {\rm V}).

The graph shows two  "half Gaussian functions"  around  s_1=0  (blue curve)  and  s_0=2  (red curve).  The threshold value  G.  The shaded areas mark the symbol error probability.

  • According to the first equation,  with  \Delta G = s_{0} -G= G-s_1 = 1:  
p_{\rm S} = {\rm Q} ( 1/0.8 )= {\rm Q} ( 1.25 )\approx 10.56 \%.
  • Similarly,  the second equation provides:  E_{\rm S}/{N_0} = 1/4 \cdot s_0^2/\sigma_{\rm AWGN}^2 = 1.5615:
p_{\rm S} = {\rm Q} (\sqrt{1.5615} )\approx 10.56 \%.

Due to symmetry,  the threshold  G=1  is optimal.  In this case,  the red and blue shaded areas are equal   ⇒   the symbols  \boldsymbol{s}_{0}  and  \boldsymbol{s}_{1}  are falsified in the same way.

With  G\ne 1  there is a larger falsification probability.  For example,  with  G=0.6:

p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) = {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})= 1/2 \cdot {\rm Q} ( 0.75)+ 1/2 \cdot {\rm Q} ( 1.75)\approx 13.33\% .

Here the falsification probability for the symbol  \boldsymbol{s}_{1}   ⇒   blue filled area {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 11. 33\%  is much larger than that of the symbol  \boldsymbol{s}_{0}   ⇒   red filled area {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 2\%.


On–Off–Keying with noncoherent demodulation

The following diagram shows the structure  (in the equivalent low-pass range)  of the optimal OOK receiver for incoherent demodulation.  See  "Detailed description".  According to this graph applies:

Receiver for incoherent OOK demodulation  (complex signals are labeled blue)
  • The input signal  \boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)  at the receiver is generally complex because of the current phase angle  \phi  and because of the complex noise term  \boldsymbol{n}(t).
  • Now the correlation between the complex received signal  \boldsymbol{r}(t)  and a  "complex basis function"  \boldsymbol{\xi}(t)  is required.
  • The result is the  (complex)  detected value  \boldsymbol{r},  from which the magnitude  y = |\boldsymbol{r}(t)|  is formed as a real decision input.
  • If  y \gt G,  then the estimated value  m_0  for the symbol  \boldsymbol{s}_{0}  is output,  otherwise the estimated value  m_1  for the symbol  \boldsymbol{s}_{1}.
  • Once again,  the mean symbol error probability can be represented as the sum of two joint probabilities:
p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) = {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).


Error probability calculation considering Rayleigh and Rice distribution

To calculate the symbol error probability for incoherent demodulation,  we start from the following graph.  Shown is the received signal in the equivalent low-pass region in the complex plane.

Incoherent demodulation of On-Off-Keying
  1. The point  \boldsymbol{s_1}=0  leads in the received signal again to  \boldsymbol{r_1}=0.
  2. In contrast,  \boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}  can lie on any point of a circle with  radius  1  since the phase  \phi  is unknown.
  3. The decision process taking into account that the AWGN noise is now to be interpreted in two dimensions,  as indicated by the arrows in the graph.
  4. The decision region  I_1  for symbol  \boldsymbol{s_1}  is the blue filled circle with radius  G,  where the correct value of  G  remains to be determined.
  5. If the received value  \boldsymbol{r} is outside this circle,  i.e. in the red highlighted area  I_0,  the decision is in favor of  \boldsymbol{s_0}.


\rm Rayleigh\ portion

Considering the AWGN–noise,  \boldsymbol{r_1}=\boldsymbol{s_1} + \boldsymbol{n_1}.  The noise component  \boldsymbol{n_1}  has a  "Rayleigh distribution"  (amount of the two mean-free Gaussian components for  I  and  Q).

  • Their conditional PDF is with the rotationally symmetric noise component  \eta  with  \sigma=\sigma_{\rm AWGN} :
f_{y\hspace{0.05cm}\vert \hspace{0.05cm}\boldsymbol{s_1}} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} \boldsymbol{s_1})=\frac{\eta}{\sigma^2}\cdot {\rm e}^{-\eta^2 / ( 2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma^2) } = f_{\rm Rayleigh}(\eta) .
  • Thus one obtains for the conditional probability
{\rm Pr}(\boldsymbol{r_0}|\boldsymbol{s_1}) = \int_{G}^{\infty}f_{\rm Rayleigh}(\eta) \,{\rm d} \eta \hspace{0.05cm},
and with the factor  1/2  because of the equally probable transmitted symbols, the joint probability:
{\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) = 1/2 \cdot {\rm Pr}(\boldsymbol{r_0}|\boldsymbol{s_1})= 1/2 \cdot \int_{G}^{\infty}f_{\rm Rayleigh}(\eta) \,{\rm d} \eta \hspace{0.05cm}.

\rm Rice\ portion

The noise component  \boldsymbol{n_0}  has a  "Rice distribution"  (magnitude of Gaussian components with mean values  m_x  and  m_y)   ⇒   constant  C=\sqrt{m_x^2 + m_y^2}
(Note:   In the applet, the constant  C  is denoted by  C_{\rm Rice} ).

f_{y\hspace{0.05cm}\vert \hspace{0.05cm}\boldsymbol{s_0}} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} \boldsymbol{s_0})=\frac{\eta}{\sigma^2}\cdot{\rm e}^{-({C^2+\it \eta^{\rm 2} })/ ({\rm 2 \it \sigma^{\rm 2} })}\cdot {\rm I_0}(\frac{\it \eta\cdot C}{\sigma^{\rm 2} }) = f_{\rm Rice}(\eta) \hspace{1.4cm}{\rm with} \hspace{1.4cm} {\rm I_0}(\eta) = \sum_{k=0}^{\infty}\frac{(\eta/2)^{2k} }{k! \cdot {\rm \Gamma ({\it k}+1)} }.

This gives the second joint probability:

{\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) = 1/2 \cdot \int_{0}^{G}f_{\rm Rice}(\eta) \,{\rm d} \eta \hspace{0.05cm}.
Density functions for "OOK, non-coherent"

\text{Example 2:}  The graph shows the result of this equation for  \sigma_{\rm AWGN} = 0.5  and  C_{\rm Rice} = 2.  The decision threshold is at  G \approx 1.25.  One can see from this plot:

  • The symbol error probability  p_{\rm S}  is the sum of the two colored areas.  As in Example 1 for the coherent case:
p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) = {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).
  • The area marked in blue gives the joint probability  {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.2\%  This is calculated as the integral over half the Rayleigh PDF in the range from  G  to  \infty.
  • The red highlighted area gives the joint probability  {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 2.4\%  This is calculated as the integral over half the Rice PDF in the range from  0  to  G.
  • Thus obtaining  p_{\rm S} \approx 4.6\%.  Note that the red and blue areas are not equal and that the optimal decision boundary  G_{\rm opt}  is obtained from the intersection of the two curves.
  • The optimal decision threshold  G_{\rm opt}  is obtained as the intersection of the blue and red curves.


Exercises


  • Select the number  (1,\ 2, ... )  of the task to be processed.  The number "0" corresponds to a "Reset":  Setting as at the program start.
  • A task description is displayed.  Parameter values are adjusted.  Solution after pressing "Sample solution". 
  • Always interpret the graphics and the numerical results.  The symbols  s_0  (adjustable) and  {s}_{1}\equiv 0  are equal probability.
  • For space reasons, in some of the following questions and sample solutions we also use  \sigma = \sigma_{\rm AWGN}  and  C = C_{\rm Rice}.


(1)   We consider  \text{coherent}  demodulation with  \sigma_{\rm AWGN} = 0.5  and  s_0 = 2.  What is the smallest possible value for the symbol error probability  p_{\rm S}?

  • For coherent demodulation, the PDF of the reception signal is composed of two "half" Gaussian functions around  s_0 = 2  (red) and  s_1 = 0  (blue).
  • Here the minimum  p_{\rm S} value results with  G=1  and  \Delta G = s_{0} -G= G-s_1 = 1  to  p_{\rm S}= {\rm Q} ( \Delta G/\sigma )={\rm Q} ( 1/0.5 )= {\rm Q} ( 2 )\approx 2.28 \%.
  • With  G=1  both symbols are falsified equally.   The blue area {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})  is equal to the red area  {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).  Their sum gives  p_{\rm S}.
  • With  G=0.5  the red area is almost zero.  Nevertheless   p_{\rm S}\approx 8\%  (sum of both areas)  is more than twice as large as with  G_{\rm opt}=1.


(2)   Now let  \sigma = 0.75.  With what  s_0  value does optimal G give the same symbol error probability as in (1)?  Then what is the quotient  E_{\rm S}/N_0?

  • In general  p_{\rm S}= {\rm Q}\big ( (s_0/2) / \sigma \big ).  If one increases  \sigma  from  0. 5  to   0.75, then  s_0  must also be increased   ⇒   s_0 = 3   ⇒   p_{\rm S}= {\rm Q} ( 1.5/ 0.75 )= {\rm Q} ( 2 ).
  • Except  p_{\rm S}= {\rm Q}\big ( (s_0/2) / \sigma \big )  but also holds:  p_{\rm S}= {\rm Q} ( \sqrt{E_{\rm S}/N_0} ).  It follows:  p_{\rm S}= {\rm Q}(2) ={\rm Q} ( \sqrt{E_{\rm S}/N_0})   ⇒   \sqrt{E_{\rm S}/N_0}= 2   ⇒   E_{\rm S}/N_0= 4.
  • For control:  E_{\rm S}=s_0^2/2 \cdot T, \ N_0=2T \cdot \sigma^2   ⇒   E_{\rm S}/N_0 =s_0^2/(4 \cdot \sigma^2)= 3^2/(4 \cdot 0. 75^2)=4.  The same  E_{\rm S}/N_0 =4  results for the problem  (1).


(3)   Now consider  \text{non–coherent}  demodulation with  \sigma_{\rm AWGN} = 0.75C_{\rm Rice} = 2.25  and  G=2.  What is the symbol error probability  p_{\rm S}?

  • For non–coherent demodulation, the PDF of the reception signal is composed of "half" a Rayleigh function (blue) and "half" a Rice function (red).
  • {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 1.43\%  gives the proportions of the blue curve above  G =2, and {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 15. 18\%  the proportions of the red curve below  G =2.
  • With  G=2  the sum for the symbol error probability is  p_{\rm S}\approx 16.61\% , and with  G_{\rm opt}=1.58  a slightly better value:  p_{\rm S}\approx 12.25\%.


(4)   Let  X  be a Rayleigh random variable in general and  Y  be a Rice random variable, each with above parameters.  How large are  {\rm Pr}(X\le 2)  and  {\rm Pr}(Y\le 2) ?

  • It holds  {\rm Pr}(Y\le 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 30.36\%,  since in the applet the Rice PDF is represented by the factor  1/2.
  • In the same way  {\rm Pr}(X> 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.86\%   ⇒   {\rm Pr}(X \le 2)= 1-0.0286 = 97.14\%.


(5)   We consider the values  \sigma_{\rm AWGN} = 0.75C_{\rm Rice} = 2.25  and  G=G_{\rm opt}=1. 58.  How does  p_{\rm S} change when "Rice" is replaced by "Gauss" as best as possible?

  • After the exact calculation, using the optimal threshold  G_{\rm opt}=1.58:     {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 5. 44\%{\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 6.81\%   ⇒   p_{\rm S}\approx 12.25\%.
  • With the Gaussian approximation, for the same  G  the first term is not changed.  The second term increases to  {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 9.29\%   ⇒   p_{\rm S}\approx 14.73\%.
  • The new optimization of the threshold  G  considering the Gaussian approximation leads to  G_{\rm opt}=1.53  and  p_{\rm S}\approx 14.67\%.
  • The parameters of the Gaussian distribution are set as follows:  mean  m_{\rm Gaussian}= C_{\rm Rice}=2.25,  standard deviation  \sigma_{\rm Gaussian}= \sigma_{\rm AWGN}=0.75.


(6)   How do the results change from  (5)  with  \sigma_{\rm AWGN} = 0. 5C_{\rm Rice} = 1.5  and with  \sigma_{\rm AWGN} = 1C_{\rm Rice} = 3  respectively,  each with   G=G_{\rm opt}?

  • With the optimal decision threshold  G_{\rm opt}, the probabilities are the same, both for the exact Rice distribution and with the Gaussian approximation.
  • For all three parameter sets,  E_{\rm S}/N_0= 2.25.  This suggests:  The results with non–coherent demodulation depend on this characteristic value alone.


(7)   Let the setting continue to be  \text{non–coherent/approximation}  with  C_{\rm Rice} = 3G=G_{\rm opt}.  Vary the AWGN standard deviation in the range  0.5 \le \sigma \le 1.
         Interpret the relative error   ⇒   \rm (False - Correct)/Correct  as a function of the quotient  E_{\rm S}/N_0.

  • With  \sigma =0.5   ⇒   E_{\rm S}/N_0 = 9  one obtains  p_{\rm S}^{\ \rm (exact)}\approx 0. 32\%  and  p_{\rm S}^{\ \rm (approximate)}\approx 0.38\%.  The absolute error is  0.06\%  and the relative error  18.75\%.
  • With  \sigma =1   ⇒   E_{\rm S}/N_0 = 2.25  one obtains  p_{\rm S}^{\ \rm (exact)}\approx 12. 25\%  and  p_{\rm S}^{\ \rm (approximate)}\approx 14.67\%.  The absolute error is  2.42\%  and the relative error  19.75\%.
  • ⇒   The Gaussian approximation becomes better with larger  E_{\rm S}/N_0.  This statement can be seen more clearly from the absolute than from the relative error.


(8)   Now repeat the last experiment with  \text{coherent}  demodulation and  s_0 = 3G=G_{\rm opt}.  What conclusion does the comparison with  (7) allow?

  • The comparison of  (7)  and  (8)  shows:     For each  E_{\rm S}/N_0  there is a greater (worse) symbol error probability with non–coherent demodulation.
  • For  E_{\rm S}/N_0= 9:     p_{\rm S}^{\ \rm (coherent)}\approx 0.13\%  and  p_{\rm S}^{\ \rm (non–coherent)}\approx 0.32\%.   And for  E_{\rm S}/N_0= 2.25:     p_{\rm S}^{\ \rm (coherent)}\approx 6.68\%  and  p_{\rm S}^{\ \rm (non–coherent)}\approx 12.25\%
  • The simpler realization of the incoherent demodulator (no clock synchronization) causes a loss of quality   ⇒   greater error probability.

Applet Manual

Screenshot (English version,  light background)


    (A)     Selection:

  • coherent,
  • Incoherent,
  • Incoherent with approximation.

    (B)     Parameter input: 

  • \sigma_{\rm AWGN}
  • s_0
  • E_{\rm S}/N_0
  • G_{\rm opt}

    (C)     Numerical output area of probabilities.

    (D)     Graphical output area of PDF proportions.

    (E)     Exercise selection

    (F)     Questions and solutions

About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • Last revision and English version 2021 by Carolin Mirschina. 
  • The conversion of this applet was financially supported by  "Studienzuschüsse"  (TUM Department of Electrical and Computer Engineering).  We thank.

Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen