Exercise 1.3Z: Threshold Optimization

From LNTwww
Revision as of 16:52, 1 November 2017 by Mohamed (talk | contribs)


Zur Optimierung des Schwellenwertes

In dieser Aufgabe wird ein bipolares Binärsystem mit AWGN–Rauschen („Additive White Gaussian Noise”) betrachtet, so dass für die Bitfehlerwahrscheinlichkeit

$$p_{\rm B} = {\rm Q} \left( \frac{s_0}{\sigma_d}\right)= \frac{1}{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2} \cdot \sigma_d}\right) \hspace{0.05cm}$$

gilt. Hierbei sind folgende Funktionen verwendet:

$$\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm},$$
$${\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$

Die obige Gleichung gilt für den Schwellenwert $E = 0$ unabhängig von den Symbolwahrscheinlichkeiten $p_{\rm L}$ und $p_{\rm H}$. Allerdings kann mit einem anderen Schwellenwert $E$ eine kleinere Fehlerwahrscheinlichkeit erzielt werden, wenn die beiden Auftrittswahrscheinlichkeiten unterschiedlich sind ( $p_{\rm L} ≠ p_{\rm H}$ ) Die Streuung des Rauschanteils ist stets $σ_{\rm d} = 0.5 \ \rm V$, die beiden Amplituden des Detektionsnutzanteils sind mit $±1 V$ fest vorgegeben. Zu untersuchen sind folgende Symbolwahrscheinlichkeiten:

  • $p_{\rm L} = 0.88$ und $p_{\rm H} = 0.12$,
  • $p_{\rm L} = 0.31$ und $p_{\rm H} = 0.69.$

In der Grafik ist dieser letzte Parametersatz und der Schwellenwert $E = 0.1 \cdot s_{\rm 0}$ dargestellt.

Hinweise:

$$\frac{{\rm d\hspace{0.05cm}Q} (\it x)} {{\rm d}\hspace{0.05cm}x} = \frac{\rm 1}{\sqrt{\rm 2\pi}} \cdot \rm e^{\it -x^{\rm 2}/\rm 2} \hspace{0.05cm}.$$
  • Die Werte der Funktion Q(x) können Sie mit folgendem Interaktionsmodul bestimmen:

Komplementäre Gaußsche Fehlerfunktionen

Fragebogen

1

Welcher Zusammenhang besteht zwischen Q(x) und erfc(x)?

erfc$(x)$ = $2 \cdot$ Q($2^{1/2} \cdot x$),
erfc$(x)$ = $2^{1/2} \cdot$ Q($x/2^{1/2}$),
erfc$(x) \approx$ Q($x$).

2

Welche Fehlerwahrscheinlichkeit ergibt sich mit pL = 0.88 und E = 0?

$E = 0: p_B$ =

$\%$


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)